
ORBITAL DEBRIS CLOUD EVOLUTION: AN

ANALYSIS OF FRAGMENTATION EVENTS IN

LOW EARTH ORBIT

by

Reece Humphreys

A Thesis Submitted to the Faculty of

The Wilkes Honors College

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Biological and Physical Sciences

with a Concentration in Physics

Wilkes Honors College of

Florida Atlantic University

Jupiter, Florida

May 2021

ORBITAL DEBRIS CLOUD EVOLUTION: AN

ANALYSIS OF FRAGMENTATION EVENTS IN

LOW EARTH ORBIT

by

Reece Humphreys

This thesis was prepared under the direction of the candidate’s thesis ad-
visor, Dr. Yaouen Fily, and has been approved by the members of their
supervisory committee. It was submitted to the faculty of the Harriet L.
Wilkes Honors College and was accepted in partial fulfillment of the re-
quirements for the degree of Bachelor of Science in Biological and Physical
Sciences.

SUPERVISORY COMMITTEE:

Dr. Yaouen Fily

Dr. Shane Welker

Dean Justin Perry, Harriet L. Wilkes Honors College

Date

ii

Acknowledgments

This thesis is dedicated to Dr. Yaouen Fily. He has provided instrumen-
tal support throughout this thesis and is the person who inspired me to
concentrate in physics. The intuitions and lessons learned throughout the
courses I took with him are at the essence of this thesis. Additionally, I
would like to give a special thanks to Dr. Timothy Steigenga, who provided
me countless opportunities and showed me there is always a path forward.

iii

Abstract

Author: Reece Humphreys

Title: Orbital Debris Cloud Evolution: An analysis

of fragmentation events in low Earth orbit

Institution: Harriet L. Wilkes Honors College, Florida Atlantic

University

Thesis Advisor: Dr. Yaouen Fily

Degree: Bachelor of Science in Biological and Physical Sciences

Concentration: Physics

Year: 2021

The amount of orbital debris has rapidly grown due to humanity’s de-

sire to work in, explore, and utilize space. However, compared to most

types of pollution that people experience daily, it is unlikely that the aver-

age person will ever encounter space pollution. Yet, it poses a significant

threat to many technologies we depend on daily such as GPS and weather

prediction satellites. Orbital debris are the remnants of orbital collisions,

weapons tests, decommissioned satellites, and spent rocket stages that are

passing over our heads faster than bullets and containing similar energy

to hand grenades. This paper explores the existing models of orbital de-

bris generation, how clouds of debris evolve with respect to time, and their

ramifications.

iv

Contents

Acknowledgements iii

Abstract iv

List of Figures vii

List of Tables ix

List of Symbols x

1 Introduction 1
1.1 Motivation . 1
1.2 Methodology . 2
1.3 Roadmap . 3

2 Modeling Satellite Breakups 5
2.1 The NASA Standard Satellite Breakup Model 5
2.2 Implementing the NASA Breakup Model 6

2.2.1 Characteristic Length and Number of fragments . . . 6
2.2.2 Area to Mass Distribution 10
2.2.3 Change in Velocity Distribution 12

2.3 Validating the Implementation 14

3 State Representation 16
3.1 Orbital State vectors and their advantages 17
3.2 Keplerian elements and their advantages 19

4 Debris Cloud Evolution 24
4.1 Ellipsoid and Ring Phase . 24
4.2 Transition to Toroid and Band Phase 27
4.3 Toroid and Band Phase . 29

4.3.1 Aerodynamic Drag 30
4.3.2 Effects of Drag on Orbital Elements 33
4.3.3 Nodal Precession . 37

5 Results 39
5.1 Data Source . 39
5.2 Decay Time . 40
5.3 Spread . 42

6 Conclusion 45

Appendices 50

v

A Flux 51

B Atmospheric Model Tabulated Values 53

C Code 54
C.1 Breakup Model . 54
C.2 Coordinate Transforms . 64
C.3 Orbit Propagation . 69

vi

List of Figures

2.1 The algorithm used for producing the characteristic length
distribution used in the NASA breakup model. 7

2.2 A sketch illustrating the process for determining the number
of fragments in each characteristic length bin. 8

2.3 The characteristic length distribution produced by ODAP of
a catastrophic collision involving a rocket body with a mass
of 1000kg, a projectile of mass 10kg, and an impact velocity
of 10 km/s. 10

2.4 The area distribution (a) and the mass distribution (b) pro-
duced by ODAP of a catastrophic collision involving a rocket
body with a mass of 1000kg, a projectile of mass 10kg, and
an impact velocity of 10 km/s. 12

3.5 A visualization of the orbital state vector approach to rep-
resenting satellites [4]. 16

3.6 A diagram illustrating the Keplerian elements related to the
orbital plane intersecting a reference plane [2] 20

3.7 The semi-major axis, a, along with the semi-minor axis, b,
and the foci of an ellipse, F1 and F2 [5]. 20

3.8 The relationship between the eccentricity and the resulting
conic section [2]. 21

4.9 The three phases of debris cloud evolution [13]. 24
4.10 A visualization created by ODAP of the ellipsoid formation

occurring. 25
4.11 A visualization created by ODAP of the completed ring for-

mation. 27
4.12 Measuring the flux at the time of the ellipsoid phase (a) and

measuring the flux near the completion of the ring phase (b). 28
4.13 The flux of the fragments as a function of time (a) and the

convergence ratio of the flux as a function of time (b). . . . 29
4.14 A visualization created by ODAP of the completed band

formation. 30
4.15 A diagram illustrating how the force of drag slows down a

satellite, causing an eventual deorbit. 31
4.16 The atmospheric density of Earth as a function of altitude

according to the Exponential Atmospheric Model. 32
4.17 An illustration of an equatorial bulge causing nodal preces-

sion [3]. 37
5.18 The altitudes of 50 pieces of debris generated by a non-

catastrophic collision with a relative impact velocity of 2
km/s for both the Starlink satellite (a), and OXP 1 (b). . 42

vii

5.19 The kernel density estimation performed on the band for-
mation phase of the Starlink satellite. The sampled values
are from the beginning of the phase, the midpoint, and the
end. 44

viii

List of Tables

1 (NASA Breakup Model Implementation Comparison of re-
sults [16]. 15

2 The values used in the exponential atmospheric model [17]. . 53

ix

List of Symbols

A Cross-sectional area [m2].

H Scale height for exponential atmospheric model [km].

Ik Modified Bessel function of the first kind and order k.

J2 Second zonal harmonic coefficient for the Earth.

Lc Fragment characteristic length [m].

Me Reference mass for collisions [kg].

Mp Projectile mass [kg].

Mt Target mass [kg].

M Mass [kg].

∆v Relative velocity [km/s].

Ω Longitude of the ascending node [rad or deg].

Φ Flux of fragments.

N Normal distribution.

µE Earth’s planetary gravitational constant [km3/s2].

µ Mean value.

ν True anomaly [rad or deg].

ω Argument of the periapsis [rad or deg].

ρ Atmosphere density [kg/m3].

a Semi-major axis [km].

e Eccentricity.

h Altitude [km].

i Inclination [rad or deg].

vc Relative impact velocity [km/s].

x

1 Introduction

1.1 Motivation

Due to the accelerating launch cadence in the space sector, increased acces-

sibility and resources for small teams to create cube satellites, and satel-

lite mega constellation constructions underway, researchers have become

increasingly concerned about the implications of potential orbital colli-

sions. These worries have been compounded by the actions taken by for-

eign nations with regards to anti-satellite weapons which create substantial

amounts of debris. In one such instance, a 2007 Chinese anti-satellite mis-

sile test was universally condemned and received statements from govern-

ment officials such as the U.K. prime minister whose spokesperson stated,

“We are concerned about the impact of debris in space and we expressed

that concern.” These fragmentation events can be difficult to track due to

the small size of some of the debris fragments that are generated, yet they

can pose a great hazard to other satellites and crewed operations being

conducted in space. Tens of millions of pieces of orbital debris currently

exist within Low Earth Orbit (LEO) with an average size smaller than 1cm.

While minuscule in size, these pieces of debris have an average impact ve-

locity of 10 km/s which generates similar energy to that of an exploding

hand grenade. It is, therefore, paramount to study the phenomena that

arise within orbital debris clouds to gather methods for mitigating debris

cloud formations. Without such a study, the future commercialization of

space, the potential for humanity to become a multi-planetary species, and

the benefits that the advanced satellites provide researchers will remain in

jeopardy.

1

1.2 Methodology

The first component in modeling orbital debris is to implement a breakup

model which makes predictions about the outcome of an orbital collision

or explosion. Breakup models use experimental data to create statistical

models that predict the size, mass, speed, and number of debris pieces gen-

erated in a fragmentation event. Once these characteristics are obtained,

equations of motion can be implemented that account for the significant

forces, such as drag, acting on each debris fragment to model how the debris

position and velocity will evolve over time.

This paper implements the NASA Standard Satellite Breakup Model to

simulate the orbital collisions and gather information regarding the behav-

ior of orbital debris [10]. This was accomplished by utilizing the model to

create an implementation in Python, called Orbital Debris Analysis with

Python (ODAP), which has been made open source on GitHub for others

wishing to build on the foundations of this research.

Following the implementation of the breakup model, the implementation

of dominant orbital perturbations is given. These are forces that act on

debris to change their orbits over time and include effects such as atmo-

spheric drag and gravitational perturbations. The optimal way to represent

these effects is through changes in orbital parameters, which is an alterna-

tive to expressing the current state of an object with Euclidean coordinates

(x, y, z, vx, vy, vz). The benefits of using orbital parameters is explored more

in-depth in Chapter 3.

Once the breakup model is established, longer-term debris cloud evolu-

tion is outlined. The evolution falls into multiple distinctive phases, which

are characterized by the most dominant forces. For example, the initial

2

https://github.com/ReeceHumphreys/ODAP

phase is called the ring formation phase, and the only force that needs to

be considered is gravity. However, in the band formation phase, drag needs

to be considered.

Finally, an analysis showing the applications of ODAP is provided to

demonstrate how we can gain insights into phenomenon such as the time

for the debris to deorbit and how the spread of the debris occurs over

time. This analysis juxtaposes two different satellites experiencing the

same type of non-catastrophic collision to illustrate how the initial orbits

of the satellites play a significant factor in the extent to which the debris

will remain a hazard in orbit.

1.3 Roadmap

This current chapter serves as an introduction to orbital debris modeling.

Additionally, it motivates why orbital debris is an important area of re-

search. As such, it is a non-technical introduction to the topic that is

recommended for anyone not familiar with orbital mechanics and the prob-

lem of orbital debris.

Chapter 2 introduces the NASA breakup model, which is the primary

method for modeling how an explosion or collision produces debris frag-

ments. It begins by detailing the history of the breakup model and how it

functions at a high level. Following this is an in-depth explanation of how

the breakup model works using statistical distributions. Finally, it provides

figures that illustrate how the distributions are used in practice.

Chapter 3 explains two different methods that can be used to describe the

motion of objects in orbit, Keplerian and orbital elements. It is beneficial

to utilize both parameterizations as they each provide different benefits.

3

Orbital elements utilize the position and velocity to specify an object’s

motion. As such, they are the most intuitive to understand and provide

a direct method for creating visualizations. On the other hand, Keplerian

elements are a more abstract representation that allows for more efficient

computations as they have Kepler’s laws of orbital motion built into them.

The chapter includes an introduction to both of these methods and defi-

nitions and explanations for readers who may not be familiar with either

representation.

Chapter 4 introduces the different phases that the debris will go through

as time progresses. As such, this chapter delves into the technical details

and assumptions used for each phase. Additionally, it explores the methods

required to perform the efficient computation of each phase. Nonetheless,

the description of each phase includes a non-technical overview of the forces

at play.

Chapter 5 illustrates how the breakup model and debris cloud evolution

simulations can be used to analyze the characteristics of orbital debris. It

performs an analysis on the cloud formation of two different types of satel-

lites and how their initial orbits influence the debris decay time and spread

of the debris over time.

4

2 Modeling Satellite Breakups

2.1 The NASA Standard Satellite Breakup Model

A satellite is any artificial body placed in orbit around the earth or moon

or another celestial body. The definition of the term is intentionally gen-

eral and, as such, can be used to reference spacecraft, remnants of rockets,

and communication devices in orbit. A satellite breakup model is a math-

ematical model used to describe the outcome of a satellite breakup due to

an explosion or collision [15]. A satellite breakup model should describe

the size, area-to-mass (AM) ratio, and the ejection velocity of each frag-

ment produced in the satellite breakup [10]. The NASA Standard Satellite

Breakup Model is an industry-standard breakup model developed by NASA

and is used by most major space agencies such as the European Space

Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA).

The breakup model’s implementation was provided by Johnson et al. in

2001 [10] and was later clarified by Kristo in 2011 [12].

The NASA standard breakup model uses experimental observations per-

formed both on Earth and in orbit to characterize the breakup using statis-

tical distributions. The choice to use statistical distributions is a result of

the stochastic nature of the breakup event, meaning it would be impossible

to reproduce the same circumstances each time. For example, explosions

are stochastic due to the complex chemical reactions that lead to the ex-

plosion. By using a statistical distribution and sampling from it we can

more accurately represent the fragments that would be generated during

a collision or explosion. In this paper, I will be focusing on how collision

fragments are generated. The explosion case is handled in a similar way

5

albeit using slightly different parameter values.

2.2 Implementing the NASA Breakup Model

2.2.1 Characteristic Length and Number of fragments

To account for the different characteristics of each fragment of debris, the

statistical distributions must be expressed as a function of some indepen-

dent variable [10]. In the latest version of the NASA breakup model, this

variable is called the characteristic length, denoted Lc [10]. By defining

the distributions using characteristic length we ensure that the mass, area,

and velocity of each fragment are not constant for all debris with the same

characteristic length. This in turn guarantees that the stochastic nature of

the breakups is reflected in our models. It should be noted that in prior

versions of the NASA breakup model, the mass of each piece of debris was

used as the independent variable [12]. However, characteristic length was

found to be more directly linked to both in-orbit and terrestrial breakup

data [10].

The implementation of the characteristic length distribution can be cum-

bersome to follow. As such, a flow chart illustrating the steps of the algo-

rithm is provided below. Each of the steps listed in the flow chart will be

explored in further detail in the rest of this subsection.

6

Figure 2.1: The algorithm used for producing the characteristic length
distribution used in the NASA breakup model.

The creation of the characteristic lengths was not given in the origi-

nal specification of the NASA breakup model by Johnson [10] but was

included in the corrections by Krisko in 2001. Krisko specifies that the

NASA breakup model deposits fragments of Lc from 1mm to over 1m in

bins and that the number of fragments in each bin is determined by a

power law that will be discussed later. However, Letizia’s implementation

for CiELO modified this to first create 100 bins that are equally spaced

7

on a logarithmic scale between 1mm and 10 cm. In this paper, we will

be following Letizia’s methodology for fragments smaller than 10 cm as it

has the most up-to-date information about the NASA breakup model. The

pieces of debris that are larger than 10cm will be handled separately using

Krisko’s methodology to ensure that the breakup model conserves mass,

i.e., that the masses of the debris add up to the mass of the object(s) they

originated from. Figure 2.2 below illustrates the process of using bins to

determine the number of fragments of each size.

Number of
fragments in each
bin from power law

Bins created on a
log scale Larger debris

handled separately

2.

1.

3.

1mm 10cm
Characteristic Length

N
um

be
r o

f f
ra

gm
en

ts

Figure 2.2: A sketch illustrating the process for determining the number of
fragments in each characteristic length bin.

To determine the number of fragments in each characteristic length bin,

we acknowledge that collisions and explosions will produce different types

of fragments. Explosions will produce larger debris fragments with smaller

velocities while collisions tend to generate a large number of small fragments

with high velocities [6]. As such, the number of fragments in each bin will

be determined by different power laws based on the type of breakup event.

The number of explosive fragments of size Lc is governed by the following

8

equation

N(Lc) = 6SL−1.6
c (1)

With S = 1, the relationship has been observed to be valid for rocket upper

stages with masses in the range of 600-1000 kg [10]. For explosions, due

to other malfunctions such as battery explosions and anti-satellite tests, a

value of S between 0.1 and 1 was found to fit the experimental data better

[12].

In the case of a collision, a distinction must be made between catastrophic

or non catastrophic. A collision is categorized as catastrophic if it causes

the complete fragmentation of both the impactor and the target [13]. This

occurs when the energy per target mass exceeds 40Jg−1 [12]. The number

of produced fragments for a collision is governed by

N(Lc[m]) = 0.1(Me)
0.75L−1.71

c , (2)

where Me is defined as follows:

Me[kg] =


Mt[kg] +Mp[kg] Catastrophic collision

Mp[kg] ∗ (vc[km/s]/1[km/s])2 Non Catastrophic collision.

(3)

In equation (3), Mt is the target mass, Mp is the projectile mass, and Vc is

the relative impact velocity between the target and the projectile.

Figure 2.3 shows sample results from ODAP to illustrate the character-

istic length distribution described above. Additionally, the relevant ODAP

function can be found in the appendix section C.1.

9

Figure 2.3: The characteristic length distribution produced by ODAP of
a catastrophic collision involving a rocket body with a mass of 1000kg, a
projectile of mass 10kg, and an impact velocity of 10 km/s.

2.2.2 Area to Mass Distribution

The area-to-mass ratio, A/M , for fragments is a distribution that was based

on analysis of thousands of fragmentation debris and provides us with a

method to determine the mass of each fragment of debris. The discrete

distributions were found by using a χ2 fit to orbital decay characteristics

for 1,780 upper stage explosion fragments, and similar data was developed

for spacecraft fragments [10]. Each type of debris producer —RB, SC, and

SAT— will produce different size debris. As such, the distribution that

determines the area to mass ratio has three variants. All three are based

on a normal distribution but use different expressions for determining the

mean and standard deviation of the distribution. For simplicity, the rest of

this section will only provide the details of the SC distribution. However,

the implementation of the other two categories is included in ODAP.

10

For small objects with Lc < 8cm, SAT, the A/M distribution is expressed

as

DA/M(λc, χ) = N (µA/M(λc), σA/M(λc), χ). (4)

DA/M is the distribution function of χ as a function of λc, where

λc = log10(Lc), (5)

χ = log10(A/M) (6)

N is the normal distribution function with mean µA/M and standard devi-

ation σA/M , where

µA/M =


−0.3, λc ≤ −1.75

−0.3− 1.4(λc + 1.75), −1.75 < λc < −1.25

−1.0, λc ≥ −1.25

(7)

and (8)

σA/M =


0.2, λc ≤ −3.5

0.2 + 0.1333(λc + 3.5) λc > −3.5

(9)

Every fragment of debris has a corresponding A/M distribution since

both µA/M and σA/M are functions of λc. To determine the corresponding

A/M ratio for each debris, a random value is drawn from the distribution.

This accounts for stochastic nature of breakup events mentioned previously.

The A/M ratio alone does not provide enough information to determine

both the area and mass of a fragment. As such, the average cross-sectional

11

area, A, can also be obtained through a one-to-one correspondence with Lc

using the following expression [10]:

Ax =


0.540424 ∗ L2

c where Lc < 0.00167 m

0.556945 ∗ L2.0047077
c where Lc ≥ 0.00167 m

(10)

Utilizing both the A/M ratio and the cross sectional area A, we can

now obtain the mass M easily using M = Ax/(A/M). Figure 2.4 shows a

simulated A/M distribution and average cross sectional area. The code to

reproduce this is found in the appendix Section C.1.

(a) (b)

Figure 2.4: The area distribution (a) and the mass distribution (b) pro-
duced by ODAP of a catastrophic collision involving a rocket body with
a mass of 1000kg, a projectile of mass 10kg, and an impact velocity of 10
km/s.

2.2.3 Change in Velocity Distribution

The differential amount of velocity that each fragment will gain due to the

breakup event is determined in a similar manner to the A/M ratio. The

12

notable differences are that the distribution is now a log-normal distribution

and that an additional check is implemented to ensure that extremely high

ejection velocities are not included in the case of collisions [13].

More explicitly, the velocity check is performed by sampling a value from

the velocity distribution and checking if it is lower than 1.3vc, where vc is

the relative collision velocity. If the value fails the check then new values

are drawn until the check is passed [13].

The change in velocity, ∆v, is modeled by log-normal distribution that

is function of the A/M ratio by

D∆v = N (µv(χ), σv(χ), ξ) (11)

where

ξ = log10(∆v), (12)

χ = log10(A/M), (13)

µv(χ) = 0.2χ+ 1.85, (14)

σv(χ) = 0.4, (15)

The differential velocity vector is constructed by sampling from a uniform

distribution for a velocity unit vector and then scaling it with the values

from the log-normal distribution.

It should be noted that details for efficiently handling the resampling

of velocities are sparse. ODAP’s implementation of the velocity distribu-

tion often takes tens of thousands of iterations to complete. One or two

13

fragments often have an area-to-mass ratio that causes the log-normal dis-

tribution to be highly unlikely to return a value that is lower than 1.3Vc.

To mitigate this issue, we limit the number of iterations to 100,000. If no

suitable value is found before the maximum iteration limit is hit, a value

of 1.3Vc is assigned to that piece of debris.

2.3 Validating the Implementation

Due to the niche nature of orbital debris analysis, it can be challenging to

find any full implementation of the breakup model. Additionally, many of

various space agencies around the world do not share the details of how

they implemented the models. For this reason, the above implementations

were largely modeled after the details given in the CiELO [13] which mimics

the information provided in NASA literature.

To validate that ODAP’s implementation of the breakup model was per-

formed correctly, a comparison is made to existing data provided by various

space agencies for a given scenario. The first scenario is an explosion event

involving a rocket body that weighs 1000kg. The second scenario is a

catastrophic collision event between a rocket body that weighs 1000kg and

a 10kg projectile mass with an impact velocity of 10km/s. The data was

provided in a presentation given by Rossi et al. [16].

As shown in the table 1, the data from the various space agencies has

some significant differences, especially for the characteristic length in the

> 1mm range, despite implementing the same NASA breakup model. This

is most likely a result of ambiguities in the original NASA breakup model

specification literature, as well as differences in how various programming

languages perform random sampling. The goal of ODAP is to be within

14

similar ranges as the rest of the data.

Model

Number of Fragments

Length Mass Area Velocity

>1mm >1cm >10cm >1m >1g >1cmˆ2 >100msˆ-1

ASI 378,581 9,403 234 7 2,472 5,878 112,932

CNSA 37,865 960 32 9 254 - 11,380

DLR 1,217,054 11,724 230 0 25,844 31,124 31,124

ESA 324,886 8,159 206 6 2,093 5,024 98,717

NASA 434,928 10,731 248 8 2,525 6,416 132,032

ODAP 378,525 9,479 223 6 3613 5,850 120,481

Table 1: (NASA Breakup Model Implementation Comparison of results
[16].

15

3 State Representation

Once the fragmentation event has been simulated, we must describe the

motion of the fragments over time. To this end, we need a method of

representing the fragments that will provide all of the information required

for this description. An intuitive method of doing so is using orbital

elements, which use the position and velocity in a specific coordinate

system. More specifically it uses orbital vectors in an Earth-Centered

Inertial (ECI) Coordinate system. This representation is illustrated

in Figure 3.5. The orbital state vector representation is a natural result of

Newton’s laws of motion and the universal law of gravitation.

Figure 3.5: A visualization of the orbital state vector approach to repre-
senting satellites [4].

While this method of representing satellites is the most intuitive, it has

inherent limitations due to it being a standard way of describing the motion

of any object. As such, nothing about the way orbits behave is included in

the representation. This leads to an alternate way of describing the motion

16

using Keplerian elements, which result from Kepler’s laws of planetary

motion. These consist of the eccentricity, e, semi-major axis, a, inclination,

i, longitude of the ascending node, Ω, the argument of periapsis, ω, and

the true anomaly, ν. Since this representation results from Kepler’s laws,

it has information about orbital mechanics built into it.

Both of these methods have advantages and disadvantages for modeling

orbital debris, and as such, it is often convenient to switch back and forth

between them. Keplerian elements are a more abstract representation of

an object’s motion but provide significant benefits for performing propa-

gations forward in time. Orbital state vectors are often more suited to

performing visualizations and give a more intuitive sense of each piece of

debris’s current state. Both of these representations are explored in this

section, as well as their benefits and construction.

3.1 Orbital State vectors and their advantages

The orbital state vectors utilize Newton’s laws of motion and Newton’s

universal law of gravitation to describe the motion of an object in space.

Newton’s universal law of gravitation states that

~Fgrav = G
m1m2~r

| ~r |3
.

This is the dominant force that acts on orbital objects, neglecting drag. As

such, application of Newton’s second law yields

~ai = G
∑
i 6=j

mj
~rj − ~ri
| ~rj − ~ri |3

. (16)

Therefore, the change in an object’s velocity can be expressed as the sum

17

of the contributions of gravitational attraction from all other surrounding

bodies. Gravitational force depends on mass, meaning the gravitational

attraction for a piece of debris to nearby debris is negligible compared

to the gravitational attraction from a nearby planetary body. Thus, for

computational efficiency, inter-particle interactions will be neglected.

The benefits of using orbital state vectors are that they provide a natu-

ral intuition for how the motion of a piece of debris will change over time

and they provide the necessary information for 3D visualization. However,

a large drawback of using state vectors is that all six degrees of freedom,

(x, y, z, vx, vy, vz), will be changing during each time step. As such, when

simulating a large number of fragments orbiting a body, the memory usage

will grow quite large. Additionally, the periodic nature of orbits is not cap-

tured with this parameterization. More precisely, knowing the state of a

piece of debris in the far future will require propagating that debris from its

initial conditions up to the desired time step. This is an undesirable con-

sequence and one of the primary motivations for preferring the Keplerian

element parameterization.

18

3.2 Keplerian elements and their advantages

When viewed from an inertial plane, two orbiting bodies trace distinctive

trajectories, where each has a focus at the common center of mass. When

switching to a non-inertial frame centered on one of the bodies, only the

opposite body’s trajectory is viewable. Keplerian elements are a parame-

terization that describes these non-inertial trajectories [2]. The reference

body is called the primary body. In our case, this is the Earth, while the

other body is called the secondary body. It should be noted that there is

no preferred primary or secondary body.

The first step to reparameterize the motion of the orbital debris is to

use the position vector, ~r, and velocity vector, ~v, to define the specific

angular momentum vector as

~h = ~r × ~v. (17)

Using the Earth’s equator as the fundamental plane, which is the plane

that is used as a reference, we can begin constructing the parameters of

the orbital plane—the plane created by tracing out the ~r vector, which

contains both ~r and ~v. The intersection of the orbital plane with the

fundamental plane is called the line of nodes.

The ascending node is the spot where the orbiting body crosses the

plane of reference/equatorial plane in a northerly direction. Similarly, the

descending node is where it crosses the plane of reference in a southerly

direction. The vector ~n points in the direction of the ascending node and

is found by taking the cross product of the unit vector k̂ with the angular

19

Figure 3.6: A diagram illustrating the Keplerian elements related to the
orbital plane intersecting a reference plane [2]

.

momentum ~h.

~n = k̂ × ~h (18)

The semi-major axis, a, is one half of the major axis. The major axis

is a line that goes through both foci of the ellipse and the center and ends

at the widest point of the perimeter.

Figure 3.7: The semi-major axis, a, along with the semi-minor axis, b, and
the foci of an ellipse, F1 and F2 [5].

Using the vis-viva equation, the semi-major axis, a, can be defined as

a =
1

2

| ~r |
− | ~v |

2

µ

, (19)

20

where µ is the standard gravitational parameter of the primary body. For

Earth, the value of µ is 3.986× 1014m3/s2.

The orbital eccentricity, e =|| ~e ||, is a dimensionless parameter that

indicates to what degree an orbit around another body deviates from a

perfect circle. It has the value of 0 for a circular orbit, a value between

0 and 1 for elliptic orbits, 1 for parabolic escape orbits, and greater than

1 for hyperbolic orbits. For the purpose of orbital debris in LEO, the

eccentricities will be in the elliptic orbit range.

The equation for eccentricity can be expressed from the the orbital state

vectors as follows:

~e =

(
| ~v |2

µ
− 1

| ~r |

)
~r − (~r · ~v)

µ
~v (20)

Figure 3.8: The relationship between the eccentricity and the resulting
conic section [2].

The inclination, i, is the angle formed between the unit vector pointing

in the k̂ direction and can be calculated by

i = arccos
Kz

| ~h |
, (21)

where ~h is the angular momentum.

21

The true anomaly, ν, is used to define the position of the body in

its orbit, and is the angle between the direction of the periapsis and the

current position of the body.

ν[rad] =


arccos

~e · ~r
| ~e || ~r |

for ~r · ~v ≥ 0

2π − arccos
~e · ~r
| ~e || ~r |

otherwise

(22)

The eccentric anomaly, E, is also used to measure an object’s position

in an orbit. The eccentric anomaly is defined using the magnitude of the

eccentricity vector, e =| ~e |, and the true anomaly as follows:

E = 2 arctan
tan

ν

2√
1 + e

1− e

(23)

The longitude of the ascending node, Ω, is the angle between the

ascending node and the unit vector ı̂

Ω[rad] =


arccos

nx
| ~n |

for ny ≥ 0

2π − arccos
nx
| ~n |

for ny < 0.

(24)

The argument of periapsis, ω, is the angle in the orbital plane that is

between the ascending node and the periapsis and is calculated using

ω[rad] =


arccos

~n · ~e
| ~n || ~e |

for ez ≥ 0

2π − arccos
~n · ~e
| ~n || ~e |

for ez < 0

(25)

22

Finally, using Kepler’s equation we can define the mean anomaly as

M = E − e sinE (26)

We can now parameterize each of the debris fragments using (e, a, i,

Ω, ω, M). This step is crucial to ensure that in the absence of orbital

perturbations, only one of these parameters, the mean anomaly, will change

with respect to time, t. This will allow for more efficient computations in

the band formation phase of the simulation. Moreover, the change in mean

anomaly with respect to time is analytic and expressed as

dM

dt
=

√
µ

a3
. (27)

As such, the position of a piece of debris in orbit can be found at any

time in the future without having to numerically approximate its change

in position over time. Due to the vast amount of debris generated, this will

provide major benefits for the band formation phase of the orbital debris

cloud.

23

4 Debris Cloud Evolution

Debris cloud evolution is the collective change in the orbits and positions

of fragments with respect to time. This evolution goes through a few

distinctive phases, notably the ellipsoid, ring formation, toroid, and band

formation, as illustrated in Figure 4.9. In addition to having different

shapes, those phases differ in how long they last and the type of model

used to describe them. For example, the ellipsoid and ring formations occur

within a few days. As such, only the force of gravity will have a significant

effect during this period. However, the toroid and band formation phases

take over a year. As a result, additional forces such as drag will have more

prominent effects due to the increased duration. Different methodologies

need to be applied for each phase to ensure fast and accurate computations.

These different phases, the forces being considered, and the methodologies

used will be analyzed in-depth in the following subsections.

Figure 4.9: The three phases of debris cloud evolution [13].

4.1 Ellipsoid and Ring Phase

At the time of the fragmentation event, all debris fragments have the same

position. However, as seen in Section 2, each fragment has a different ve-

locity in both direction and magnitude. This causes the debris to spread

24

out, form an ellipsoid (Figure 4.10), and then move into a complete ring

around the Earth. As the debris cloud expands, the number of other satel-

lites it can potentially impact grows. On the other hand, the cloud also gets

sparser, and the probability of any specific satellite getting hit decreases.

In other words, the odds of subsequent collision spread out as well.

Figure 4.10: A visualization created by ODAP of the ellipsoid formation
occurring.

It takes two to three days for the debris to form a uniform ring around the

Earth. On this time scale, weak effects such as air drag and gravitational

forces between debris are negligible. As a result, each debris fragment orbits

around the Earth as if the other fragments did not exist. From a practical

point of view, we can use standard results for the two-body gravitational

problem [17].

While the two-body problem is well characterized, it is not computation-

ally efficient enough to perform long duration and accurate propagation.

As such, we reframe the problem as propagating Kepler orbits.

Kepler orbits are orbits in which no perturbations of inter-gravitational

interactions are considered—a special case of the two-body problem. Fram-

25

ing the problem this way lends itself naturally to using Keplerian elements.

For Kepler orbits, only the orbits’ anomalies will be changing over time,

which reduces the number of computations that need to be performed and

aids in maintaining accuracy.

This benefit is a result of Kepler’s equation, which is expressed in

terms of the mean anomaly as

M = E − e sin(E) =

√
µ

a3
(t− t0) , (28)

where E is the eccentric anomaly, e is the eccentricity, µ is the standard

gravitational parameter, a is the semi-major axis, t is some time in the

future, and t0 is the current time. Since we have an analytic expression for

the mean anomaly, we do not need to use any integration methods for prop-

agating Kepler orbits forward in time. This results in the aforementioned

computational efficiencies.

The next step is to find the corresponding eccentric and true anomalies

from the propagated mean anomaly. The eccentric anomaly is found from

the Kepler equation; however, there is no closed-form solution given the

mean anomaly. As such, numerical integration must be used to find the

eccentric anomaly. The processes for performing the integration of Kepler’s

equation are the subject of many other research papers due to the impor-

tance it plays in orbit propagation. It is not included in this paper for

conciseness, but a Python implementation of one of the methods can be

found in the appendix Section C.3.

Kepler’s equation has another form which enables us to convert the re-

26

sulting eccentric anomaly to the true anomaly. This form is given as

ν = 2 arctan

(√
1 + e

1− e
tan

E

2

)
. (29)

Since we now have expressions for how the three anomalies will change

over time for Kepler orbits, we can accurately propagate the debris until

the ring formation phase is completed. However, we now need a method

to detect the completion of the ring formation phase, cuing the switch to

performing the propagation for future phases. A visualization of end result

of the ring formation phase is provided in Figure 4.11.

4.2 Transition to Toroid and Band Phase

Detecting the end of the ring formation phase is crucial in propagating the

debris cloud. When transitioning from the ring phase to the toroid and

band phases, additional forces such as drag must be considered. Addition-

ally, these new phases take a much longer amount of time to form. Both of

these factors result in needing to switch to a new propagation method. As

Figure 4.11: A visualization created by ODAP of the completed ring for-
mation.

27

such, detecting when the ring has formed allows us to switch to this new

propagation method.

To assess whether the system has formed a roughly uniform ring, we

monitor the amount of debris passing through a certain region of space as

a function of time. A visualization of how this process works is provided

in Figure 4.12.

(a) (b)

Figure 4.12: Measuring the flux at the time of the ellipsoid phase (a) and
measuring the flux near the completion of the ring phase (b).

More specifically, to measure the fragments’ spread we will define a

particle-based flux. This is accomplished by creating an xz-plane in the

equatorial coordinate system and detecting when particles have switched

from one side of the plane to the other. Plotting the results will show peaks

when the fragments pass through, which will converge to some value as the

fragments become uniformly spread out.

Plotting the flux over time shows these expected peaks and what seems to

be convergence to some value. However, the data is quite noisy and we need

a concrete method to determine when the fragments will be distributed

uniformly. As such, we need to develop a method to test for when the

data has converged. A property that is true of all uniform distributions

is that the standard deviation approximately equals the mean. As such,

28

(a) (b)

Figure 4.13: The flux of the fragments as a function of time (a) and the
convergence ratio of the flux as a function of time (b).

we can define a convergence ratio using the variance and mean of the flux.

When the convergence ratio is within some defined tolerance we can test for

when the flux has become uniform. Once the convergence ratio is within

the defined tolerance the ring formation phase has completed. It should be

noted that the ring never reaches true uniformity which results in oscillating

flux. An example of how the flux and convergence ratio evolves with time

is shown in Figure 4.13. Additional information about the derivation used

to determine when the ring formation phase has ended can be found in

Section Aof the appendix.

4.3 Toroid and Band Phase

For the evolution of the cloud to continue, we must now consider orbital

perturbations that will cause the orbits to change over time. Perturbations

are forces that act on each debris fragment and result in the motion chang-

ing over time. The two most dominant of these forces are drag and the J2

29

perturbation. The result of drag is the debris cloud expanding inward, as

the effects of the atmosphere slow down debris fragments. Similarly, the J2

perturbation results from the gravitational field produced by the earth and

causes the debris to spread out. The results of applying these perturbations

are shown in Figure 4.14.

Figure 4.14: A visualization created by ODAP of the completed band for-
mation.

4.3.1 Aerodynamic Drag

A significant perturbation that causes changes in the fragments’ orbits is

atmospheric drag. Atmospheric drag acts on a fragment due to molecules

in the atmosphere colliding with its surface and is a natural consequence

of the conservation of momentum. This causes a fragment to slow down,

which in return lowers the orbit. This cycle continues until the object is no

longer in orbit and re-enters the atmosphere. Figure 4.15 illustrates this

effect.

To model the effects of drag, a suitable atmospheric model must be se-

30

Figure 4.15: A diagram illustrating how the force of drag slows down a
satellite, causing an eventual deorbit.

lected. An atmospheric model tells us information about factors such as

air pressure, air density,and wind speed at varying locations in the atmo-

sphere. However, it would be cumbersome and computationally inefficient

to utilize a model that contains all of this information. As such, atmo-

spheric models tend to focus on a select few variables rather than creating

a universal “best” model that considers all relevant factors [17].

Choosing a model that best fits a given use case comes down to the

desired criterion for speed, accuracy, and applicability. For example, the

DAMAGE orbital debris model assumes a rotating, oblate atmosphere with

density and density scale height values taken from the 1972 COSPAR In-

ternational Reference Atmosphere (CIRA) [14]. A detailed exploration of

various atmospheric models is given by Gaposchkin and Coster [8], but

for the purposes of this paper, we will be focusing on a model called the

exponential atmospheric model. This is a a static model that assumes

a spherically symmetric distribution of particles, where the density decays

exponentially with increasing altitude [17].

In the exponential atmospheric model the air density ρ varies according

31

to

ρ = ρ0 exp

(
−hellp − h0

H

)
(30)

where ρ0 is a reference density that is used with h0, a reference altitude,

hellp is the actual altitude above the ellipsoid, and H is a scale height.

The reference density and reference altitude are tabulated values that

come from sources such as the U.S. Standard Atmosphere and CIRA. The

scale height is a value used to ensure continuity throughout ρ. The combi-

nation of the U.S. Standard Model and CIRA will yield moderately accu-

rate results for general purposes and as such will utilized in for computing

the force of drag [17]. The tabulated values are included in the appendix

Section B.

Figure 4.16: The atmospheric density of Earth as a function of altitude
according to the Exponential Atmospheric Model.

The air density, ρ, as a function of altitude is shown above. Note that

32

the y-axis is given as a log scale due to the density of rapidly becoming

thinner as altitude increases.

4.3.2 Effects of Drag on Orbital Elements

The aerodynamic drag on an object is typically expressed in the following

form:

FD =
1

2m
ρv2 CDA (31)

where ρ is the air density, v is the speed of the object relative to the fluid,

CD is an experimentally determined dimensionless number, A is the cross

sectional area, and m is the mass of the satellite.

Drag is a force that will cause an acceleration that opposes the direction

of motion of an object. As such, drag produces a similar effect to a ret-

rograde thrust which enables aerobraking, a useful orbital maneuver that

can be performed around planetary bodies with an atmosphere. Similarly,

for orbital debris, drag is the predominant force behind changing the semi-

major axis and eccentricity, gradually causing the debris to have a lower

perigee.

As a result of the density increasing exponentially as altitude decreases,

the effects of drag create a form of a feedback loop. A satellite experiences

drag, which lowers its orbit, which in turn causes it to experience more drag.

This will continue until a satellite eventually burns up in the atmosphere

or reaches the ground.

The expressions for the effects of drag on orbital elements were derived

by King-Hele and cover three different ranges of eccentricities [11].

33

da

dt
=



−CDA
M

√
µEaρ exp

(
−a−Rh

H

)
[I0 + 2eI1+

3

4
e2(I0 + I2) +

e3

4
(3I1 + I3)] for 0.01 ≤ e ≤ 0.2

−CDA
M

√
µEaρ exp

(
−a−Rh

H

)
[I0 + 2eI1] for for 0.001 ≤ e < 0.01

−CDA
M

√
µEaρ exp

(
−a−Rh

H

)
for e < 0.001

(32)

de

dt
=



−CDA
M

√
µE
a
ρ exp

(
−a−Rh

H

)
for 0.01 ≤ e ≤ 0.2

−CDA
M

√
µE
a
ρ exp

(
−a−Rh

H

)[
I1 +

e

2
(I0 + I2)

]
for 0.001 ≤ e < 0.01

0 for e < 0.001

(33)

Ik(z) represents the modified Bessel function with order n which is de-

fined as

Ik(z) =
1

π

∫ π

0

ez cos(θ) cos(kθ)dθ k ∈ Z, (34)

where z =
ae

H
.

Following the precedents of many other texts, we will be assuming that

the fragments have a drag coefficient of 0.7. Modifications were made by

Frey et al. to find more appropriate boundary conditions and to increase

the accuracy of each phase by including more terms of the series expansion

[7].

The first modification to the King-Hele implementation is to introduce

34

two functions, ka and ke, that are used for describing the rate of change of

a and e in all eccentricity regimes [7].

ka = δ
√
µaρ(hp)

ke = ka/a

For circular orbits, e = 0, the change in a and e can be solved using the

following expression:
da

dt
= −ka

de

dt
= 0

For low eccentric orbits, e < eb(a,H), a series expansion in e is performed

and integrated using the first kind modified Bessel function as

da

dt
= −ka exp(−z)(eTKl

aI +O(e6)) (35)

de

dt
= −ke exp(−z)(eTKl

eI +O(e6)), (36)

35

where

eT = (1 e e2 e3 e4 e5) (37)

IT = (I0 I1 I2 I3 I4 I5 I6) (38)

Kl
a =



1 0 0 0 0 0 0

0 2 0 0 0 0 0

3

4
0

3

4
0 0 0 0

0
3

4
0

1

4
0 0 0

21

64
0

28

64
0

7

64
0 0

0
30

64
0

15

64
0

3

64
0



(39)

Kl
e =



0 1 0 0 0 0 0

1

2
0

1

2
0 0 0 0

0 −5

8
0

1

8
0 0 0

− 5

16
0 − 4

16
0

1

16
0 0

0 − 18

128
0 − 1

128
0

3

128
0

− 18

256
0 − 19

256
0

2

256
0

3

256
.



(40)

The vast majority of the debris falls in the low eccentricity range, so only

the circular and low eccentricity expressions are implemented. The high

36

eccentricity range has a similar formulation provided by [7].

4.3.3 Nodal Precession

Nodal precession is the precession of the orbital plane of a satellite

around the rotational axis of the central body. This is due to the non-

spherical nature of the rotating central body. The non-spherical nature is

a result of the centrifugal force produced by the rotation which deforms

the body, causing an equatorial bulge.

As a result, the planetary body creates a non-uniform gravitational field

that induces a torque on satellites.

Figure 4.17: An illustration of an equatorial bulge causing nodal precession
[3].

Intuitively, it would appear that the torque would reduce the inclination

of the orbit. However, due to the bulge, the gravitational force is not

directed towards the center of the body, but rather is offset toward the

equatorial plane. As such, it causes torque-induced gyroscopic precession

which causes the ascending and descending nodes to drift with time. This

phenomenon is called nodal precession.

The effects of nodal precession on the ascending and descending nodes

37

is expressed by

dω

dt
=

3

2
J2
R2
E

p2
n̄

(
2− 5

2
sin2(i)

)
dΩ

dt
= −3

2
J2
R2
E

p2
n̄ cos(i)

where p = a(1− e2) is the semi-latus rectum of the orbit, n̄ =

√
µE
a3

is the

mean motion, RE is the radius of the Earth, and J2 is the Earths second

dynamic form factor.

The J2 term is a result of an infinite series equation that describes the

perturbation effects of a rotating planetary body on the gravity of a planet.

Each term of the series is denoted as Jn, however the J2 term is more than

1000 times larger than the other terms [1]. This is why the J2 effect is

considered a relevant orbital perturbation for the evolution of an orbital

debris cloud. For context, Earth’s J2 term has a value of 0.108 × 10−2

whereas its J3 term has a value of 0.253× 10−5.

38

5 Results

Now that the critical components for debris cloud evolution are established,

we can use ODAP to gain insights into orbital debris’s evolution. The first

step is choosing a suitable scenario for the fragmentation event. Once the

scenario is selected, the propagation methods defined in Section 4 can be

applied to study the debris throughout the various phases. This includes

analyzing the estimated time for the fragments to deorbit and the frag-

ments’ spread over time.

5.1 Data Source

Selecting a realistic scenario to analyze can be difficult without prior knowl-

edge of typical satellite orbits. As such, it is beneficial to perform analysis

on existing satellites in low Earth orbit. This can be accomplished by utiliz-

ing a database of Two-lines elements (TLE’s), which are a standardized

way of describing information about a satellite’s orbit.

ODAP utilizes a TLE database maintained by the website CelesTrak1 to

make all cataloged objects in orbit available for fragmentation events.

The analysis conducted in the following subsections is performed on two

different satellites. The first is a satellite called OXP 1, which has an

altitude of approximately 750 km and a 25-degree inclination. This is in

a higher region of low Earth orbit and will allow us to analyze long-term

changes on the debris cloud.

The second satellite is a Starlink satellite produced by SpaceX. This

satellite is at a much lower altitude, around 580 km, and is a member of a

1Additional information about TLE’s and CelesTrak can be found on their
https://www.celestrak.com/NORAD/elements/

39

satellite mega constellation currently being constructed to provide global

internet coverage. It was selected as part of this analysis due to the in-

creasing number of companies expressing interest in low Earth orbit mega-

constellations. Additionally, the Starlink mega-constellation has quickly

grown to having over one thousand satellites in orbit, with the end goal

being 30,000 [9].

5.2 Decay Time

When a fragmentation event occurs, it is relevant to study the debris frag-

ments’ expected duration in orbit. Debris in orbit for a longer duration

will have a higher probability of eventually colliding with other objects in

space.

We expect that fragmentation events that occur in higher altitudes will

generate debris that last longer. This is a direct consequence of drag’s

weaker effect at high altitudes due to the decreased air density. Addition-

ally, since drag depends on the surface area of a debris fragment, we expect

to see some debris fragments that deorbit faster than others at similar

altitudes.

To analyze the orbital decay time using ODAP, we can use the simulated

data from the band formation phase. The output of this phase is the change

in the Keplerian elements over time. As such, we can use the expression

for the perigee, which is the altitude at the lowest point of an orbit. The

perigee is defined using Keplerian elements as

z = a(1− e). (41)

40

It should be noted that the perigee is being measured from the center of

the Earth. To find the true altitude, we must subtract the radius of the

Earth from the result.

Applying this process for both the Starlink satellite and OXP 1 results

in the data used in Figure 5.18. The fragmentation event used in this

simulation was identical for both satellites. The only changes were the

starting orbits of the satellites. While only a random sample of data from

both simulations is displayed in the Figure, the data revealed that 100% of

the Starlink fragments were deorbited within three years while only 1.5%

of the OXP 1 fragments were deorbited during this same interval.

This simulation concludes that fragmentation events occurring with mega-

constellations in the lower region of LEO are of less concern than those

occurring in higher orbits. While both create immense amounts of debris,

the lower altitude Starlink satellites pose less of a threat to the long term

health of LEO.

41

(a) (b)

Figure 5.18: The altitudes of 50 pieces of debris generated by a non-
catastrophic collision with a relative impact velocity of 2 km/s for both
the Starlink satellite (a), and OXP 1 (b).

5.3 Spread

Another essential characteristic of orbital debris to study is the spread of

the debris over time. The procedure for obtaining the necessary data to

measure the spread of the fragments is similar to the decay time. However,

we do not need any additional equations and can visualize the spread of the

fragments directly from the results provided by the band formation phase.

We can use the distribution of the right angle of the ascending node Ω over

time to get a sense of how the debris are spreading apart due to the J2

perturbation.

This component of the analysis was conducted by performing a kernel

density estimation on Ω at three different times of the band formation

phase, the start, middle, and end time. A kernel density estimation is a

way to estimate the probability density function of a random variable. As

such, we can use it to get a sense of how the distribution of Ω changes

42

throughout time.

Figure 5.19 shows the results of performing this type of analysis on the

fragmentation event used in the above subsection. As you can see, initially,

most of the debris had a right angle of ascending node that was tightly

clustered around the satellite’s initial value. As the debris cloud evolves,

this distribution becomes increasingly uniform. Notably, since the Starlink

debris gets deorbited relatively quickly, it never has an opportunity to

become entirely uniform. The simulated data for OXP exhibit this same

phenomenon, thus allowing the analysis performed on the Starlink satellite

suffice.

In Section 5.2, we learned that the initial altitude of a breakup event

dramatically impacts the time for the debris to deorbit. However, this

Section revealed that it does not play a significant role in how spread out the

debris becomes over time. The purpose of this analysis is to demonstrate

how ODAP can be applied to gain new intuitions and understanding about

the evolution of orbital debris.

43

Figure 5.19: The kernel density estimation performed on the band for-
mation phase of the Starlink satellite. The sampled values are from the
beginning of the phase, the midpoint, and the end.

44

6 Conclusion

Orbital debris will be a persistent problem as humankind continues to ex-

plore and utilize space to advance science. As such, the ability to model

and study the effects associated with it is crucial. Unfortunately, much of

the existing literature is difficult to find and gives an incomplete picture

of the entire process needed to model orbital debris. Additionally, most of

the available code to perform the analysis is written in older programming

languages that are no longer widely used. Thus, ODAP was developed to

be an open-source, easily accessible tool that utilizes a modern program-

ming language to aid in research conducted in this field. This thesis also

serves as a complete introduction to the necessary information needed to

understand the process of modeling orbital debris.

There are many avenues for expanding on the research conducted in

this thesis. One of the most interesting is modeling the formed debris

band analytically. This provides many benefits for conducting analysis

but requires a significant amount of additional background information to

understand. As such, it was outside the scope of this research. Additionally,

ODAP will be continually refined to add new functionality, such as adding

support for different atmospheric models. This would allow for a more

in-depth analysis of the time it takes for debris to deorbit.

Many of these additional complexities are planned to be implemented

into ODAP in the future. As such, the code base for ODAP is expected to

evolve significantly over time. The appendix of this paper includes some

of the most important functionality for reference, but the most up-to-date

version will be found on Github.

45

Index

argument of periapsis, 22

ascending node, 19

atmospheric drag, 30

descending node, 19

earth-centered inertial (eci)

coordinate system, 16

eccentric anomaly, 22

exponential atmospheric model,

31

fundamental plane, 19

inclination, 21

kepler orbits, 25

kepler’s equation, 23, 26

keplerian elements, 17

line of nodes, 19

longitude of the ascending node,

22

mean anomaly, 23

nodal precession, 37

orbital eccentricity, 21

orbital elements, 16

orbital plane, 19

perigee, 40

semi-major axis, 20

specific angular momentum, 19

true anomaly, 22

two-lines elements, 39

46

References

[1] J2 perturbation. https://ai-solutions.com/

_freeflyeruniversityguide/j2_perturbation.htm#:

˜:text=The%20term%20J2%20comes%20from,the%

20gravity%20of%20a%20planet.&text=The%20two%

20main%20orbital%20elements,Argument%20of%

20Perigee%20(%CF%89). (Accessed on 04/19/2021).

[2] Astrodynamics/Classical Orbit Elements - Wikibooks, open books

for an open world. URL https://en.wikibooks.org/wiki/

Astrodynamics/Classical_Orbit_Elements.

[3] Nodal precession, Dec 2020. URL https://en.wikipedia.org/

wiki/Nodal_precession.

[4] Orbital state vectors, Sep 2020. URL https://en.wikipedia.

org/wiki/Orbital_state_vectors.

[5] Semi-major and semi-minor axes, Mar 2021. URL https://

en.wikipedia.org/wiki/Semi-major_and_semi-minor_

axes.

[6] S. Barrows. EVOLUTION OF ARTIFICIAL SPACE DEBRIS

CLOUDS.

[7] S. Frey, C. Colombo, and S. Lemmens. Extension of the King-

Hele orbit contraction method for accurate, semi-analytical prop-

agation of non-circular orbits. Advances in Space Research, 64

(1):1–17, July 2019. ISSN 0273-1177. doi: 10.1016/j.asr.2019.

47

https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm#:~:text=The%20term%20J2%20comes%20from,the%20gravity%20of%20a%20planet.&text=The%20two%20main%20orbital%20elements,Argument%20of%20Perigee%20(%CF%89).
https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm#:~:text=The%20term%20J2%20comes%20from,the%20gravity%20of%20a%20planet.&text=The%20two%20main%20orbital%20elements,Argument%20of%20Perigee%20(%CF%89).
https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm#:~:text=The%20term%20J2%20comes%20from,the%20gravity%20of%20a%20planet.&text=The%20two%20main%20orbital%20elements,Argument%20of%20Perigee%20(%CF%89).
https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm#:~:text=The%20term%20J2%20comes%20from,the%20gravity%20of%20a%20planet.&text=The%20two%20main%20orbital%20elements,Argument%20of%20Perigee%20(%CF%89).
https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm#:~:text=The%20term%20J2%20comes%20from,the%20gravity%20of%20a%20planet.&text=The%20two%20main%20orbital%20elements,Argument%20of%20Perigee%20(%CF%89).
https://ai-solutions.com/_freeflyeruniversityguide/j2_perturbation.htm#:~:text=The%20term%20J2%20comes%20from,the%20gravity%20of%20a%20planet.&text=The%20two%20main%20orbital%20elements,Argument%20of%20Perigee%20(%CF%89).
https://en.wikibooks.org/wiki/Astrodynamics/Classical_Orbit_Elements
https://en.wikibooks.org/wiki/Astrodynamics/Classical_Orbit_Elements
https://en.wikipedia.org/wiki/Nodal_precession
https://en.wikipedia.org/wiki/Nodal_precession
https://en.wikipedia.org/wiki/Orbital_state_vectors
https://en.wikipedia.org/wiki/Orbital_state_vectors
https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes
https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes
https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

03.016. URL https://www.sciencedirect.com/science/

article/pii/S0273117719301978.

[8] E. Gaposchkin and A. Coster. Analysis of satellite drag. 1988.

[9] C. Henry. Spacex submits paperwork for 30,000 more star-

link satellites, Oct 2019. URL https://spacenews.com/

spacex-submits-paperwork-for-30000-more-starlink-satellites/.

[10] N. L. Johnson, P. H. Krisko, J. C. Liou, and P. D. Anz-Meador.

NASA’s new breakup model of evolve 4.0. Advances in Space Re-

search, 28(9):1377–1384, Jan. 2001. ISSN 0273-1177. doi: 10.1016/

S0273-1177(01)00423-9. URL http://www.sciencedirect.

com/science/article/pii/S0273117701004239.

[11] D. King-Hele and D. Walker. The effect of air drag on satellite or-

bits: Advances in 1687 and 1987. Vistas in Astronomy, 30:269–289,

1987. ISSN 0083-6656. doi: https://doi.org/10.1016/0083-6656(87)

90006-7. URL https://www.sciencedirect.com/science/

article/pii/0083665687900067.

[12] P. H. Krisko. Proper Implementation of the 1998 NASA Breakup

Model. Orbital Debris Quarterly News, 15(4):4,5, Oct. 2011. URL

http://orbitaldebris.jsc.nasa.gov/.

[13] F. Letizia. Space debris cloud evolution in Low Earth Orbit. PhD

thesis, temp, Feb. 2016.

[14] H. Lewis, A. E. White, R. Crowther, and H. Stokes. Synergy of debris

mitigation and removal. Acta Astronautica, 81(1):62–68, December

2012. URL https://eprints.soton.ac.uk/388786/.

48

https://www.sciencedirect.com/science/article/pii/S0273117719301978
https://www.sciencedirect.com/science/article/pii/S0273117719301978
https://spacenews.com/spacex-submits-paperwork-for-30000-more-starlink-satellites/
https://spacenews.com/spacex-submits-paperwork-for-30000-more-starlink-satellites/
http://www.sciencedirect.com/science/article/pii/S0273117701004239
http://www.sciencedirect.com/science/article/pii/S0273117701004239
https://www.sciencedirect.com/science/article/pii/0083665687900067
https://www.sciencedirect.com/science/article/pii/0083665687900067
http://orbitaldebris.jsc.nasa.gov/
https://eprints.soton.ac.uk/388786/

[15] J. C. Liou. Orbital Debris Modeling. URL https://ntrs.nasa.

gov/citations/20120003286.

[16] A. Rossi. NASA Breakup Model Implementation Comparison of re-

sults. temp, page 29, 2021.

[17] D. A. Vallado and M. C. W. D. Fundamentals of astrodynamics and

applications. Microcosm Press., 2013.

49

https://ntrs.nasa.gov/citations/20120003286
https://ntrs.nasa.gov/citations/20120003286

Appendices

Section A of this appendix covers the details of the flux derivation used

to determine the end of the ring formation phase. Section B contains the

tabulated values used in the exponential atmospheric mode. These values

were difficult to find in other sources and are included in this appendix

for convenience. Finally, Section C comprises of several relevant ODAP

code samples. It should be noted that the latest version of ODAP can be

found at https://github.com/ReeceHumphreys/ODAP. As such, some of

the code in the appendix may be out of date when compared to the version

hosted on Github. Additionally, the Github version includes a Jupyter

notebook used for performing the analysis in Chapter 5 and generating

figures included in this thesis.

50

https://github.com/ReeceHumphreys/ODAP

A Flux

Let’s pick a time interval T and call N the number of debris pieces that

cross the blue cross-section in Figure 4.12. Let us divide the time interval

into M subinterval of length T/M.

What we measure in the simulation is the number of debris crossing the

cross-section during each subinterval. We are interested in predicting the

statistics of those numbers when the positions of the debris along their

orbits are distributed uniformly and independently from each other.

Each debris has a probability of 1/M of crossing during a specific subin-

terval. The probability of exactly n debris crossing during a specific subin-

terval obeys a binomial distribution:

Pn = Cn
N

(
1

M

)n(
1− 1

M

)N−n
.

Expectedly, the average number of debris crossing during a single subin-

terval is the number of debris crossing during the entire interval, T, divided

by the number of subintervals:

〈Pn〉 =
N∑
0

nPn =
N

M
.

The variance is:

〈
(Pn − 〈Pn〉)2〉 =

N

M

(
1− N

M

)
.

Therefore, if the debris ring is fully randomized and the average number

of debris crossing per time step is φ, we should expect the actual measure-

ment to fluctuate through time with a variance φ(1− φ).

51

This, in turn, provides a criterion to assess whether the ring is fully ran-

domized. Initially, when the debris are concentrated in a tight cluster, the

variance is much higher. It then decreases gradually as the ring random-

izes. When it becomes of order φ(1 − φ), we declare the ring randomized

and move on to the band formation phase.

52

B Atmospheric Model Tabulated Values

Lower
Bound
(km)

Upper
Bound
(km)

Base
Altitude
(km)

Nominal
Density
(kg/m3)

Scale
Height
(km)

0 25 0 1.225 7.249

25 30 25 3.899× 10−2 6.349

30 40 30 1.774× 10−2 6.682

40 50 40 3.972× 10−3 7.554

50 60 50 1.057× 10−3 8.382

60 70 60 3.206× 10−4 7.714

70 80 70 8.770× 10−5 6.549

80 90 80 1.905× 10−5 5.799

90 100 90 3.396× 10−6 5.382

100 110 100 5.297× 10−7 5.877

110 120 110 9.661× 10−8 7.263

120 130 120 2.438× 10−8 9.473

130 140 130 8.484× 10−9 12.636

140 150 140 3.845× 10−9 16.149

150 180 150 2.070× 10−9 22.523

180 200 180 5.464× 10−10 29.74

200 250 200 2.789× 10−10 37.105

250 300 250 7.248× 10−11 45.546

300 350 300 2.418× 10−11 53.628

350 400 350 9.518× 10−12 53.298

400 450 400 3.725× 10−12 58.515

450 500 450 1.585× 10−12 60.828

500 600 500 6.967× 10−13 63.822

600 700 600 1.454× 10−13 71.835

700 800 700 3.614× 10−14 88.667

800 900 800 1.170× 10−14 124.64

900 1000 900 5.245× 10−15 181.05

Table 2: The values used in the exponential atmospheric model [17].

53

C Code

C.1 Breakup Model

Listing 1: Fragmentation event implementation� �
1 import numpy as np

2 import scipy

3 from enum import IntEnum

4

5 debris_category = IntEnum ('Category' , 'rb sc soc')

6 from numba import njit , prange

7

8 """ ----------------- Mean ----------------- """

9 def make_mean_AM (debris_type) :

10

11 def RB_mean_AM (lambda_c) :

12

13 mean_am_1 = np . empty_like (lambda_c)

14 mean_am_2 = np . empty_like (lambda_c)

15

16 mean_am_1 [lambda_c<=−0.5] = −0.45

17 I = (lambda_c>−0.5) & (lambda_c<0)

18 mean_am_1 [I] = −0.45 − (0 . 9∗ (lambda_c [I] +0.5))

19 mean_am_1 [lambda_c>=0] = −0.9

20

21 mean_am_2 . fill (−0.9)

22

23 return np . array ([mean_am_1 , mean_am_2])

24

25 def SC_mean_AM (lambda_c) :

26 mean_am_1 = np . empty_like (lambda_c)

27 mean_am_2 = np . empty_like (lambda_c)

28

29 mean_am_1 [lambda_c<=−1.1] = −0.6

30 I = (lambda_c>−1.1) & (lambda_c<0)

31 mean_am_1 [I] = −0.6 − (0 . 318∗ (lambda_c [I] +1.1))

32 mean_am_1 [lambda_c>=0] = −0.95

33

54

34 mean_am_2 [lambda_c<=−0.7] = −1.2

35 I = (lambda_c>−0.7) & (lambda_c<−0.1)

36 mean_am_2 [I] = −1.2 − (1 . 333∗ (lambda_c [I] + 0 . 7))

37 mean_am_2 [lambda_c>=−0.1] = −2.0

38

39 return np . array ([mean_am_1 , mean_am_2])

40

41 def SOC_mean_AM (lambda_c) :

42

43 mean_am_1 = np . empty_like (lambda_c)

44 mean_am_2 = np . empty_like (lambda_c)

45

46 mean_am_1 [lambda_c<=−1.75] = −0.3

47 I = (lambda_c>−1.75) & (lambda_c<−1.25)

48 mean_am_1 [I] = −0.3 − (1 . 4∗ (lambda_c [I] +1.75))

49 mean_am_1 [lambda_c>=−1.25] = −1.0

50

51 mean_am_2 . fill (0)

52 return np . array ([mean_am_1 , mean_am_2])

53

54 if debris_type == debris_category . rb :

55 return RB_mean_AM

56 elif debris_type == debris_category . sc :

57 return SC_mean_AM

58 else :

59 return SOC_mean_AM

60

61 """ ----------------- Standard Deviation ----------------- """

62

63 def make_standard_dev_AM (debris_type) :

64

65 def RB_std_dev_AM (lambda_c) :

66

67 std_dev_1 = np . empty_like (lambda_c)

68 std_dev_2 = np . empty_like (lambda_c)

69

70 std_dev_1 . fill (0 . 5 5)

71

72 std_dev_2 [lambda_c<=−1.0] = 0 .28

73 I = (lambda_c>−1.0) & (lambda_c<0.1)

55

74 std_dev_2 [I] = 0 .29 − (0 . 1636∗ (lambda_c [I] +1))

75 std_dev_2 [lambda_c>=0.1] = 0 .1

76

77 return np . array ([std_dev_1 , std_dev_1])

78

79

80 def SC_std_dev_AM (lambda_c) :

81

82 std_dev_1 = np . empty_like (lambda_c)

83 std_dev_2 = np . empty_like (lambda_c)

84

85 std_dev_1 [lambda_c<=−1.3] = 0 .1

86 I = (lambda_c>−1.3) & (lambda_c<−0.3)

87 std_dev_1 [I] = 0 .1 + (0 . 2∗ (lambda_c [I] +1.3))

88 std_dev_1 [lambda_c>=−0.3] = 0 .3

89

90 std_dev_2 [lambda_c<=−0.5] = 0 .5

91 I = (lambda_c>−0.5) & (lambda_c<−0.3)

92 std_dev_2 [I] = 0 .5 − ((lambda_c [I] + 0 . 5))

93 std_dev_2 [lambda_c>=−0.3] = 0 .3

94

95 return np . array ([std_dev_1 , std_dev_1])

96

97

98 def SOC_std_dev_AM (lambda_c) :

99 std_dev_1 = np . empty_like (lambda_c)

100 std_dev_2 = np . empty_like (lambda_c)

101

102 std_dev_1 [lambda_c<=−3.5] = 0 .2

103 I = (lambda_c>−3.5)

104 std_dev_1 [I] = 0 .2 + (0 . 1333∗ (lambda_c [I] +3.5))

105

106 std_dev_2 . fill (0)

107

108 return np . array ([std_dev_1 , std_dev_1])

109

110 if debris_type == debris_category . rb :

111 return RB_std_dev_AM

112 elif debris_type == debris_category . sc :

113 return SC_std_dev_AM

56

114 else :

115 return SOC_std_dev_AM

116

117 """ ----------------- Alpha ----------------- """

118 def alpha_AM (lambda_c , debris_type) :

119 def RB_alpha_AM (lambda_c) :

120 alpha = 1

121 if lambda_c <= −1.4:

122 alpha = 1

123 elif (lambda_c > −1.4 and lambda_c < 0) :

124 alpha = 1 − (0 . 3571∗ (lambda_c + 1 . 4))

125 else :

126 alpha = 0.5

127 return alpha

128

129 def SC_alpha_AM (lambda_c) :

130 alpha = 1

131 if lambda_c <= −1.95:

132 alpha = 0

133 elif (lambda_c > −1.95 and lambda_c < 0 . 5 5) :

134 alpha = 0.3 + (0 . 4∗ (lambda_c + 1 . 2))

135 else :

136 alpha = 1

137 return alpha

138

139 def SOC_alpha_AM (lambda_c) :

140 # Is not used by SOC, for saftey returning 1

141 alpha = 1

142 return alpha

143

144 if debris_type == debris_category . rb :

145 return RB_alpha_AM (lambda_c)

146 elif debris_type == debris_category . sc :

147 return SC_alpha_AM (lambda_c)

148 else :

149 return SOC_alpha_AM (lambda_c)

150

151 alpha_AM = np . vectorize (alpha_AM)

152

153 """ ----------------- Distribution A/M ----------------- """

57

154 def distribution_AM (lambda_c , debris_type) :

155

156 N = len (lambda_c)

157 lambda_c = np . array (lambda_c)

158

159 mean_factory = make_mean_AM (debris_type)

160 std_dev_factor = make_standard_dev_AM (debris_type)

161

162 mean_preSwitch = np . array (mean_factory (lambda_c))

163 std_dev_preSwitch = np . array (std_dev_factor (lambda_c))

164

165 alpha = np . array (alpha_AM (lambda_c , debris_category . rb)) # This

takes a long time

166 switch = np . random . uniform (0 , 1 , N)

167

168 if debris_type == debris_category . rb or debris_type ==

debris_category . sc :

169

170 means = np . empty (N)

171 I , J = switch<alpha , switch>=alpha

172 means [I] = mean_preSwitch [0 , I]

173 means [J] = mean_preSwitch [1 , J]

174

175 devs = np . empty (N)

176 devs [I] = std_dev_preSwitch [0 , I]

177 devs [J] = std_dev_preSwitch [1 , J]

178

179 return np . random . normal (means , devs , N)

180

181 else :

182 means = mean_preSwitch [0]

183 devs = std_dev_preSwitch [0]

184 return np . random . normal (means , devs , N)

185

186 """ ----------------- Area ----------------- """

187 def avg_area (L_c) :

188 A = np . copy (L_c)

189 I = A < 0.00167 #(m)

190 A [I] = 0.540424 ∗ A [I]∗∗2

191 I = A >= 0.00167 #(m)

58

192 A [I] = 0.556945 ∗ A [I]∗∗2 .0047077

193 return A

194

195 """ ----------------- Mean ----------------- """

196 @njit ()

197 def mean_deltaV (kai , explosion) :

198 if explosion == True :

199 return (0 . 2 ∗ kai) + 1 .85

200 else :

201 return (0 . 9 ∗ kai) + 2 .9

202

203 """ ----------------- Standard Deviation ----------------- """

204 def std_dev_deltaV () :

205 return 0 .4

206

207 """ ----------------- Distribution delta V ----------------- """

208 @njit ()

209 def distriNormale (mu , sigma , x) :

210 p = (1/(sigma∗np . sqrt (2∗np . pi)) ∗np . exp (−1/2.∗((x−mu) /sigma) ∗∗2))

211 return p

212

213 @njit ()

214 def distriDeltaVExpl (nu , chi) :

215 mu = 0.2∗chi + 1.85

216 return distriNormale (mu , 0 . 4 , nu)

217

218 @njit (parallel=True)

219 def distribution_deltaV (chi , v_c , explosion=False) :

220 N = len (chi)

221 result = np . empty_like (chi)

222 progress = 0

223

224 for i in prange (N) :

225 mean = mean_deltaV (chi [i] , explosion)

226 dev = 0.4

227 x = np . random . rand ()

228 dv =x∗1 .3∗v_c

229 dist = distriDeltaVExpl (np . log10 (dv) ,chi [i])

230 y = np . random . rand ()

231 while y > dist :

59

232 x = np . random . rand ()

233 dv = x∗1 .3∗v_c

234 dist = distriDeltaVExpl (np . log10 (dv) ,chi [i])

235 y = np . random . rand ()

236 result [i] = dist

237 return result

238

239 """ ----------------- Unit vector delta V ----------------- """

240 def unit_vector (N) :

241 vectors = np . random . normal (0 , 1 , np . array ([N , 3]))

242 vectors /= np . sqrt ((vectors∗∗2) . sum (axis=1)) [: , None]

243 return vectors

244

245 def velocity_vectors (N , target_velocity , velocities) :

246 unit_vectors = unit_vector (N)

247 velocity_vectors = velocities [: , None] ∗ unit_vectors

248 return target_velocity + velocity_vectors

249

250 from numpy . random import uniform

251

252 """ ----------------- Num. Fragments & Char. Length-----------------

"""

253 def number_fragments (l_characteristic , m_target , m_projectile , v_impact

, is_catastrophic , debris_type , explosion) :

254 # Defining reference mass

255 if explosion == True :

256 print ("explosion")

257 return 6∗(l_characteristic) ∗∗(−1.6)

258 else :

259 m_ref = 0

260 if is_catastrophic :

261 m_ref = m_target + m_projectile

262 else :

263 m_ref = m_projectile ∗ (v_impact) ∗∗2

264 return 0 .1 ∗ ((m_ref) ∗∗0 .75) ∗ l_characteristic∗∗(−1.71)

265

266

267 def characteristic_lengths (m_target , m_projectile , v_impact ,

is_catastrophic , debris_type , explosion) :

268 bins = np . geomspace (0 . 0 0 1 , 1 , 100)

60

269 N_fragments = number_fragments (bins , m_target , m_projectile ,

v_impact , is_catastrophic , debris_type , explosion)

270 N_per_bin = np . array (N_fragments [: −1] − N_fragments [1 :]) . astype (int

)

271 L_c = np . concatenate ([uniform (bins [i] , bins [i+1] , size=N_per_bin [i

]) for i in range (len (bins) − 1)])

272 return L_c

273

274 def fragmentation (m_target , m_projectile , v_impact , is_catastrophic ,

debris_type , explosion) :

275 prelim_L_c = characteristic_lengths (m_target , m_projectile ,

v_impact , is_catastrophic , debris_type , explosion)

276 prelim_lambda_c = np . log10 (prelim_L_c)

277 prelim_areas = avg_area (prelim_L_c)

278 prelim_AM = np . array (distribution_AM (prelim_lambda_c , debris_type))

279 prelim_masses = prelim_areas / 10∗∗prelim_AM

280

281 if explosion == True :

282 unaccounted_mass = m_target − np . sum (prelim_masses)

283 n_large_deb = np . random . randint (2 , 8) # Pick 2-8 pieces of deb

> 1m to spread out the rest of the mass

284

285 # Create mass range, will use `n_large_deb` to split into

sections, using 10**-4 to enure endpoints are not included

286 mass_range = np . linspace(10∗∗−4 , (unaccounted_mass − 10∗∗−4) ,

10∗∗4)

287 ranges = np . sort (np . random . choice (mass_range , n_large_deb − 1 ,

replace=False))

288 ranges = np . concatenate ([[0] , ranges , [unaccounted_mass]])

289

290 # Adding zeros for subtraction to have correct number of dim.

291 mass_per_deb = np . concatenate ((ranges [1 :] , np . zeros (1))) −

ranges

292 mass_per_deb = np . resize (mass_per_deb , mass_per_deb . size − 1)

293

294 # For L_c > 1, A/M Distribution is basically deterministic,

therefore will just use avg value

295 assumed_AM_factory = make_mean_AM (debris_type)

296 assumed_len = np . ones (mass_per_deb . shape)

297 assumed_AM = assumed_AM_factory (assumed_len)

61

298

299 # Each mean has two possible values, randomly pick one of them

for each piece of deb

300 AM_choices = np . random . choice ([0 , 1] , len (mass_per_deb) , replace

=True)

301 assumed_AM = 10∗∗np . array ([assumed_AM [AM_choices [i] , i] for i

in range (assumed_AM . shape [1])])

302

303 # mass * AM = A(L_c), therefore can reverse Area function for

L_c

304 area = mass_per_deb ∗ assumed_AM

305 found_L_c = np . sort ((area / 0 .556945) ∗∗ (1/2 .0047077)) #

Inversing the Area function defined above

306 found_lambda_c = np . log10 (found_L_c)

307 found_areas = avg_area (found_L_c)

308

309 found_AM = np . array (distribution_AM (found_lambda_c , debris_type

))

310 found_masses = found_areas / assumed_AM # Using assumed A/M

since A/M is a distribution and could get diff values.

311

312 L_c = np . concatenate ([prelim_L_c , found_L_c])

313 areas = np . concatenate ([prelim_areas , found_areas])

314 masses = np . concatenate ([prelim_masses , found_masses])

315 AM = np . concatenate ([prelim_AM , assumed_AM])

316

317 return L_c , areas , masses , AM

318 else :

319 if is_catastrophic == True :

320 # Put the rest of the mass in many fragments in last bin

321 unaccounted_mass = (m_target + m_projectile) − np . sum (

prelim_masses)

322 deposit_bin = (np . geomspace (0 . 0 0 1 , 1 , 100) [−1] + np .

geomspace (0 . 0 0 1 , 1 , 100) [−2]) /2

323 n_large_deb = np . random . randint (15 , 50) # Pick 2-8 pieces

of deb > 1m to spread out the rest of the mass

324

325 # Create mass range, will use `n_large_deb` to split into

sections, using 10**-4 to enure endpoints are not included

62

326 mass_range = np . linspace(10∗∗−4 , (unaccounted_mass −

10∗∗−4) , 10∗∗4)

327 ranges = np . sort (np . random . choice (mass_range , n_large_deb −

1 , replace=False))

328 ranges = np . concatenate ([[0] , ranges , [unaccounted_mass]])

329

330 # Adding zeros for subtraction to have correct number of

dim.

331 found_masses = np . concatenate ((ranges [1 :] , np . zeros (1))) −

ranges

332 found_masses = np . resize (found_masses , found_masses . size −

1)

333

334 found_L_c = np . ones_like (found_masses) ∗ deposit_bin

335 found_areas = avg_area (found_L_c)

336 found_AM = found_areas / found_masses

337

338 L_c = np . concatenate ([prelim_L_c , found_L_c])

339 areas = np . concatenate ([prelim_areas , found_areas])

340 masses = np . concatenate ([prelim_masses , found_masses])

341 AM = np . concatenate ([prelim_AM , found_AM])

342

343 return L_c , areas , masses , AM

344

345 else :

346 # Is a non catastrophic collision, Deposit remaining mass

in 1 large piece of deb

347 unaccounted_mass = np . array ([(m_target + m_projectile) − np

. sum (prelim_masses)])

348

349 # For L_c > 1, A/M Distribution is basically deterministic,

therefore will just use avg value, can get using np.inf

350 assumed_AM_factory = make_mean_AM (debris_type)

351 assumed_len = np . ones (unaccounted_mass . shape)

352 assumed_AM = assumed_AM_factory (assumed_len)

353

354 # Each mean has two possible values, randomly pick one of

them for each piece of deb

355 AM_choices = np . random . choice ([0 , 1] , len (unaccounted_mass) ,

replace=True)

63

356 assumed_AM = 10∗∗np . array ([assumed_AM [AM_choices [i] , i] for

i in range (assumed_AM . shape [1])])

357

358 # mass * AM = A(L_c), therefore can reverse Area function

for L_c

359 area = unaccounted_mass ∗ assumed_AM

360 found_L_c = np . sort ((area / 0 .556945) ∗∗ (1/2 .0047077)) #

Inversing the Area function defined above

361 found_lambda_c = np . log10 (found_L_c)

362 found_areas = avg_area (found_L_c)

363

364 L_c = np . concatenate ([prelim_L_c , found_L_c])

365 areas = np . concatenate ([prelim_areas , found_areas])

366 masses = np . concatenate ([prelim_masses , unaccounted_mass])

367 AM = np . concatenate ([prelim_AM , assumed_AM])

368

369 return L_c , areas , masses , AM� �
C.2 Coordinate Transforms

Listing 2: State representation implementation� �
1 import numpy as np

2 from numpy import cross

3 from numba import njit as jit , prange

4 from numpy . core . umath import cos , sin , sqrt

5 from numpy . linalg import norm

6

7 """

8 Converting from Keplerian to Cartesian

9 --------------------------------------

10 Helpful links:

11 https://downloads.rene-schwarz.com/download/M001-

Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf

12 https://gitlab.eng.auburn.edu/evanhorn/orbital-mechanics/blob/

a850737fcf4c43e295e79decf2a3a88acbbba451/Homework1/kepler.py

13

14 Notes: Code was modified from Poliastro source, elements.py

64

15 """

16

17 mu = 398600.4418 #kmˆ3sˆ-2

18

19 @jit

20 def rotation_matrix (angle , axis) :

21

22 c = cos (angle)

23 s = sin (angle)

24

25 if axis == 0 :

26 return np . array ([[1 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , c , −s] , [0 . 0 , s , c]])

27 elif axis == 1 :

28 return np . array ([[c , 0 . 0 , s] , [0 . 0 , 1 . 0 , 0 . 0] , [s , 0 . 0 , c]])

29 elif axis == 2 :

30 return np . array ([[c , −s , 0 . 0] , [s , c , 0 . 0] , [0 . 0 , 0 . 0 , 1 . 0]])

31 else :

32 raise ValueError ("Invalid axis: must be one of 'x', 'y' or 'z'"

)

33

34 @jit

35 def rv_pqw (k , p , ecc , nu) :

36 pqw = np . array ([[cos (nu) , sin (nu) , 0] , [−sin (nu) , ecc + cos (nu) ,

0]]) ∗ np . array (

37 [[p / (1 + ecc ∗ cos (nu))] , [sqrt (k / p)]]

38)

39 return pqw

40

41 @jit

42 def coe_rotation_matrix (inc , raan , argp) :

43 """Create a rotation matrix for coe transformation"""

44 r = rotation_matrix (raan , 2)

45 r = r @ rotation_matrix (inc , 0)

46 r = r @ rotation_matrix (argp , 2)

47 return r

48

49 @jit

50 def coe2rv (k , p , ecc , inc , raan , argp , nu) :

51

52 pqw = rv_pqw (k , p , ecc , nu)

65

53 r , v = rv_pqw (k , p , ecc , nu)

54 rm = coe_rotation_matrix (inc , raan , argp)

55 ijk = pqw @ rm . T

56

57 return ijk

58

59 # ks = np.array([a, e_mag, i, Omega, omega, M, nu, p_semi, T, E])

60 @jit (parallel=True)

61 def coe2rv_many_new (state , mu=mu) :

62 inc = np . deg2rad (state [2 , :])

63 raan = np . deg2rad (state [3 , :])

64 argp = np . deg2rad (state [4 , :])

65 nu = np . deg2rad (state [6 , :])

66 p = state [7 , :]

67 ecc = state [1 , :]

68

69 n = nu . shape [0]

70 rr = np . zeros ((n , 3) , dtype=np . float64)

71 vv = np . zeros ((n , 3) , dtype=np . float64)

72

73 for i in prange (n) :

74 rr [i , :] , vv [i , :] = (coe2rv (mu , p [i] , ecc [i] , inc [i] , raan [i] ,

argp [i] , nu [i]))

75

76 return rr , vv

77

78 @jit (parallel=True)

79 def coe2rv_many (k , p , ecc , inc , raan , argp , nu) :

80 inc = np . deg2rad (inc)

81 raan = np . deg2rad (raan)

82 argp = np . deg2rad (argp)

83 nu = np . deg2rad (nu)

84

85 n = nu . shape [0]

86 rr = np . zeros ((n , 3) , dtype=np . float64)

87 vv = np . zeros ((n , 3) , dtype=np . float64)

88

89 for i in prange (n) :

90 rr [i , :] , vv [i , :] = (coe2rv (k , p [i] , ecc [i] , inc [i] , raan [i] ,

argp [i] , nu [i]))

66

91

92 return rr , vv

93

94 """

95 Converting from Cartesian to Keplerian

96 --------------------------------------

97 """

98

99 def rv2coe (r , v , mu) :

100 ''' Converts a position, `r`, and a velocity, `v` to the set of

keplerian elements.'''

101 """

102 Parameters

103 ----------

104 r: array (3, n)

105 Position of the body in 3 dim. Measured using center of Earth as

origin. (m)

106 v: array (3, n)

107 Velocity of the body in 3 dim relative to Earth. (m / s)

108

109 Returns

110 -------

111 ks: array (9, n)

112 An array containing all of the keplerian elements + extra

useful info.

113 a: Float

114 e: Float

115 i: Float

116 Omega: Float

117 omega: Float

118 nu: Float

119 p_semi: Float

120 T: Float

121 """

122

123 def testAngle (test , angle) :

124 """Checks test for sign and returns corrected angle"""

125 angle ∗= 180./np . pi

126 I = test < 0

127 angle [I] = 360 . − angle [I]

67

128 return angle

129

130 r_hat = np . divide (r , norm (r , axis=1) [: , None])

131

132 # Orbital momentum vector, p

133 p = np . cross (r , v)

134

135 # Eccentricty vector, e, and magnitude, e_mag (used freq)

136 e = (np . cross (v , p) / mu) − r_hat

137 e_mag = norm (e , axis = 1)

138

139 # Longitude of the ascending node, Omega

140 Omega_hat = np . cross (np . array ([0 , 0 , 1]) [None , :] , p)

141 Omega = np . arccos (Omega_hat [: , 0] / norm (Omega_hat , axis=1))

142 Omega = testAngle (Omega_hat [: , 1] , Omega)

143

144 # Argument of periapsis, omega

145 omega = np . arccos (np . sum (Omega_hat∗e , axis=1) / (norm (Omega_hat ,

axis=1)∗norm (e , axis=1)))

146 B = e [: , 2] < 0

147 omega [B] = 2∗np . pi − omega [B]

148 omega ∗= 180 . / np . pi

149

150 # True Anomaly, nu

151 nu = np . arccos (np . sum (e∗r , axis=1) / (norm (e , axis=1) ∗ norm (r ,

axis=1)))

152 B = np . sum (r∗v , axis=1)<0

153 nu [B] = 2∗np . pi − nu [B]

154 nu ∗= 180 . / np . pi

155

156 # Inclination, i

157 i = np . arccos (p [: , 2] / norm (p , axis=1)) ∗180 ./np . pi

158

159 # Eccentric anomaly, E

160 E = 2∗np . arctan (np . tan (np . deg2rad (nu) /2) / np . sqrt ((1 + e_mag) /(1 −

e_mag)))

161

162 # Mean anomaly, M

163 M = np . mod (E − e_mag ∗ np . sin (E) , 2∗np . pi)

164 M ∗= 180./np . pi

68

165

166 # Semi-Major axis, a

167 R = norm (r , axis =1)

168 V = norm (v , axis =1)

169 a = 1/((2 / R) − (V∗V / mu))

170

171 # Semi-parmeter, p_semi

172 p_semi = norm (p , axis=1)∗∗2 / mu

173

174 # Orbital period

175 T = 2∗np . pi ∗ np . sqrt (a∗∗3 / mu)

176

177 # Keplerian State + Extra info

178 ks = np . array ([a , e_mag , i , Omega , omega , M , nu , p_semi , T , E])

179

180 return ks� �
C.3 Orbit Propagation

Listing 3: Perturbations and orbit propagation implementation� �
1 import numpy as np

2 import matplotlib . pyplot as plt

3 from numba import njit as jit , prange

4 from numpy import pi , sin , cos , sqrt

5 from scipy import integrate

6 from scipy . special import iv

7

8 # User defined libearayr

9 import planetary_data as pd

10 import CoordTransforms as ct

11 import Aerodynamics as aero

12

13 def null_perts () :

14 return {

15 'J2' : False ,

16 'aero' : False ,

17 'moon_grav' : False ,

69

18 'solar_grav' : False

19 }

20

21 class OrbitPropagator :

22

23 def __init__ (self , states0 , A , M , tspan , dt , rv=False , cb=pd . earth ,

perts=null_perts ()) :

24

25 # Need to add support for initializing with radius and velocity

26 if rv :

27 self . states = 0

28

29 else :

30 self . states = states0

31

32 # Setting the areas and masses

33 self . A = A

34 self . M = M

35

36 # Integration information

37 self . tspan = tspan

38 self . dt = dt

39

40 # Central body properties

41 self . cb = cb

42

43 # Defining perturbations being considered

44 self . perts = perts

45

46 # Defining constants for aerodynamic drag

47 if self . perts ['aero'] :

48 self . K_a = np . matrix ([[1 , 0 , 0 , 0 ,0 ,0 , 0] ,

49 [0 , 2 , 0 , 0 , 0 , 0 , 0] ,

50 [3 /4 , 0 , 3/4 , 0 , 0 , 0 , 0] ,

51 [0 , 3/4 , 0 , 1/4 , 0 , 0 , 0] ,

52 [21/64 , 0 , 28/64 , 0 , 7/64 , 0 , 0] ,

53 [0 , 30/64 , 0 , 15/64 , 0 , 3/64 , 0]])

54

55 self . K_e = np . matrix ([[0 , 1 , 0 , 0 , 0 , 0 , 0] ,

56 [1 /2 , 0 , 1/2 , 0 , 0 , 0 , 0] ,

70

57 [0 , −5/8, 0 , 1/8 , 0 , 0 , 0] ,

58 [−5/16 , 0 , −4/16 , 0 , 1/16 , 0 , 0] ,

59 [0 , −18/128 , 0 , −1/128 , 0 , 3/128 , 0] ,

60 [−18/256 , 0 , −19/256 , 0 , 2/256 , 0 , 3 / 2 5 6]])

61

62 def cartesian_representation (self) :

63 # Returns the cartesian state representation of states for vis.

purposes

64 N_t = self . states . shape [0]

65 N_frag = self . states . shape [2]

66 cartesian_states = np . empty (shape=(N_t , 2 , N_frag , 3))

67

68 for i in prange (self . states . shape [0]) :

69 cartesian_states [i , : , :] = ct . coe2rv_many_new (self . states [

i , : , :])

70

71 return cartesian_states

72

73

74 def diffy_q (self , t , state) :

75 e , a , i , Omega , omega = state . reshape (5 , len (self . A))

76 N_f = len (self . A)

77

78 # Central body information

79 mu = self . cb ['mu']

80 radius = self . cb ['radius'] #[m]

81 J2 = self . cb ['J2']

82

83 # Local variables

84 delta_e = np . zeros_like (e)

85 delta_a = np . zeros_like (a)

86 delta_i = np . zeros_like (i)

87 delta_Omega = np . zeros_like (Omega)

88 delta_omega = np . zeros_like (omega)

89

90

91 # Current orbital information

92 peri = a ∗ (1 − e) #[m]

93 p = a ∗ (1 − e∗∗2) #[m] (Semi parameter)

94 n = np . sqrt (mu / a∗∗3) # (Mea motion)

71

95

96 ############### Drag effects ###############

97 if self . perts ['aero'] :

98 h_p = (peri − radius) #[m]

99 rho = aero . atmosphere_density (h_p/1e3) #[kg * mˆ-3]

100 H = aero . scale_height (h_p/1e3) ∗ 1e3 #[m]

101

102 z = a∗e / H

103 Cd = 0.7

104 tilt_factor =1

105 delta = Cd ∗ (self . A [0] ∗ tilt_factor) / self . M [0]

106

107 e_T = np . array ([np . ones_like (e) , e , e∗∗2 , e∗∗3 , e∗∗4 , e

∗∗5])

108 I_T = np . array ([iv (i , z) for i in range (7)])

109 k_a = delta ∗ np . sqrt (mu ∗ a) ∗ rho

110 k_e = k_a / a

111

112 delta_e = np . zeros_like (e)

113 delta_a = np . zeros_like (a)

114

115 # CASE e < 0.001

116 delta_e = np . zeros_like (e)

117 delta_a = −k_a

118

119 # CASE e>= 0.001

120 I = e>= 0.001

121 trunc_err_a = a [I]∗∗2 ∗ rho [I] ∗ np . exp(−z [I]) ∗ iv (0 , z [I

]) ∗ e [I]∗∗6

122 trunc_err_e = a [I] ∗ rho [I] ∗ np . exp(−z [I]) ∗ iv (1 , z [I]) ∗

e [I]∗∗6

123

124 transform_e = e_T . T . dot (self . K_e) ∗ I_T

125 coef_e = np . array ([transform_e [i , i] for i in range (N_f)]) [

I]

126

127 transform_a = e_T . T . dot (self . K_a) ∗ I_T

128 coef_a = np . array ([transform_a [i , i] for i in range (N_f)]) [

I]

129

72

130 delta_e [I] = −k_e [I] ∗ np . exp(−z [I]) ∗ (coef_e +

trunc_err_e)

131 delta_a [I] = −k_a [I] ∗ np . exp(−z [I]) ∗ (coef_a +

trunc_err_a)

132

133 delta_e [np . isnan (delta_e)] = 0

134 delta_a [np . isnan (delta_a)] = 0

135

136 # Deorbit check

137 J = h_p < 100∗1e3

138 delta_a [J] = 0

139 delta_e [J] = 0

140

141 ############### J2 effects ###############

142 if self . perts ['J2'] :

143 base = (3/2) ∗ self . cb ['J2'] ∗ (radius∗∗2/p∗∗2) ∗ n

144 i = np . deg2rad (i)

145 delta_omega = base ∗ (2 − (5/2) ∗np . sin (i) ∗∗2)

146 delta_Omega = −base ∗ np . cos (i)

147 delta_omega = np . rad2deg (delta_omega) % 360

148 delta_Omega = np . rad2deg (delta_Omega) % 360

149

150 return np . concatenate ((delta_e , delta_a , delta_i , delta_Omega ,

delta_omega))

151

152 # Performing a regular propagation, i.e. w/ perturbations

153 def propagate_perturbations (self) :

154

155 # Initial states

156 a0 , e0 , i0 , Omega0 , omega0 = self . states [−1 , : 5 , :]

157 y0 = np . concatenate ((e0 , a0 , i0 , Omega0 , omega0))

158

159 # Propagation time

160 T_avg = np . mean (self . states [−1 , 8 , :])

161 times = np . arange (self . tspan [0] , self . tspan [−1] , self . dt)

162 output = integrate . solve_ivp (self . diffy_q , self . tspan , y0 ,

t_eval = times)

163

164 # Unpacking output (Need to drop first timestep as sudden

introduction of drag causes discontinuities)

73

165 N_f = len (self . A)

166 de = output . y [0 : N_f , 1 :]

167 da = output . y [N_f : 2∗N_f , 1 :]

168 di = output . y [2∗N_f : 3∗N_f , 1 :]

169 dOmega = output . y [3∗N_f : 4∗N_f , 1 :]

170 domega = output . y [4∗N_f : , 1 :]

171 dnu = np . random . uniform (low=0. , high=360. , size=domega . shape)

172 dp = da ∗ (1 − de∗∗2)

173

174 # Results

175 return de , da , di , dOmega , domega , dnu , dp

176

177 # Performing a Keplerian propagation, i.e. w/o perturbations

178 def propagate_orbit (self) :

179

180 times = np . arange (self . tspan [0] , self . tspan [−1] , self . dt)

181

182 # Mean anomaly rate of change

183 M_dt = sqrt (self . cb ['mu'] /self . states [0 , :] ∗ ∗ 3)

184

185 Nd = len (M_dt)

186 Nt = len (times)

187

188 # Mean anomaly over time

189 M_t = np . deg2rad (self . states [5 , : , None]) + M_dt [: , None

] ∗ times [None , :]

190 M_t = np . rad2deg (np . mod (M_t , 2∗pi))

191

192 # Eccentric anomaly over time. Note need to use E_t in rad,

thus convert to deg after using it in

193 # x1 and x2

194 E_t = np . empty (shape=(Nd , Nt) , dtype=np . float32)

195 E_t = M2E (self . states [1] , np . deg2rad (M_t))

196

197 x1 = sqrt (1 + self . states [1 , :]) [: , None] ∗ sin (E_t /

2)

198 x2 = sqrt (1 − self . states [1 , :]) [: , None] ∗ cos (E_t /

2)

199 E_t = np . rad2deg (E_t)

200

74

201 # True anomaly over time

202 nu_t = (2∗np . arctan2 (x1 , x2) % (2∗pi))

203 nu_t = np . rad2deg (nu_t) . T

204

205 n_times = nu_t . shape [0]

206 states = np . empty (shape = (n_times , self . states . shape [0] ,

self . states . shape [1]))

207

208 for i in prange (n_times) :

209 state = self . states . copy ()

210 state [6 , :] = nu_t [i , :]

211 states [i] = state

212

213 # Update internal states

214 self . states = states

215

216

217

218 # Modified from OrbitalPy.utilities

219 @jit (parallel=True , fastmath=True)

220 def M2E (e_deb , M_t , tolerance=1e−14) :

221 #Convert mean anomaly to eccentric anomaly.

222 #Implemented from [A Practical Method for Solving the Kepler Equation

][1]

223 #by Marc A. Murison from the U.S. Naval Observatory

224 #[1]: http://murison.alpheratz.net/dynamics/twobody/

KeplerIterations_summary.pdf

225 n_deb = M_t . shape [0]

226 n_times = M_t . shape [1]

227

228 E_t = np . empty_like (M_t)

229

230 for i in prange (n_deb) :

231 e = e_deb [i]

232 for j in prange (n_times) :

233 M = M_t [i , j]

234

235 MAX_ITERATIONS = 100

236 Mnorm = np . mod (M , 2 ∗ pi)

75

237 E0 = M + (−1 / 2 ∗ e ∗∗ 3 + e + (e ∗∗ 2 + 3 / 2 ∗ cos (M) ∗

e ∗∗ 3) ∗ cos (M)) ∗ sin (M)

238 dE = tolerance + 1

239 count = 0

240 while dE > tolerance :

241 t1 = cos (E0)

242 t2 = −1 + e ∗ t1

243 t3 = sin (E0)

244 t4 = e ∗ t3

245 t5 = −E0 + t4 + Mnorm

246 t6 = t5 / (1 / 2 ∗ t5 ∗ t4 / t2 + t2)

247 E = E0 − t5 / ((1 / 2 ∗ t3 − 1 / 6 ∗ t1 ∗ t6) ∗ e ∗ t6

+ t2)

248 dE = np . abs (E − E0)

249 E0 = E

250 count += 1

251 if count == MAX_ITERATIONS :

252 print ('Did not converge, increase number of

iterations')

253 E_t [i , j] = E

254 return E_t� �

76

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Methodology
	Roadmap

	Modeling Satellite Breakups
	The NASA Standard Satellite Breakup Model
	Implementing the NASA Breakup Model
	Characteristic Length and Number of fragments
	Area to Mass Distribution
	Change in Velocity Distribution

	Validating the Implementation

	State Representation
	Orbital State vectors and their advantages
	Keplerian elements and their advantages

	Debris Cloud Evolution
	Ellipsoid and Ring Phase
	Transition to Toroid and Band Phase
	Toroid and Band Phase
	Aerodynamic Drag
	Effects of Drag on Orbital Elements
	Nodal Precession

	Results
	Data Source
	Decay Time
	Spread

	Conclusion
	Appendices
	Flux
	Atmospheric Model Tabulated Values
	Code
	Breakup Model
	Coordinate Transforms
	Orbit Propagation

