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Symmetries are a driving force in the universe and continue to reveal them-

selves the deeper we look. While many undergraduate mathematics stu-

dents are introduced to symmetries with group theory, many practical ap-

plications are often overlooked. The application of symmetries provides

deep insights into various problems and can frequently simplify complex

mathematics. Applying symmetries typically requires high-level mathe-

matics that can be prohibitive for people within other disciplines. As such,

this paper explores how Lie groups, a mathematical structure for represent-

ing symmetries, can be utilized in computing, physics, and control theory

to solve practical problems from within these fields. It also serves as an

introduction to the mathematics necessary to utilize Lie groups.

iv



Contents

Acknowledgements iii

Abstract iv

1 Introduction 2
1.1 Mathematically modeling symmetries . . . . . . . . . . . . . 2
1.2 Improving numerical integration and the energy drift problem 2
1.3 Noether’s theorem . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Controllability for Affine Non-Linear Systems . . . . . . . . 4

2 Definitions 5
2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Matrices and Matrix Groups . . . . . . . . . . . . . . . . . . 8

2.2.1 Types of Matrices . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Matrix Operations . . . . . . . . . . . . . . . . . . . 11

2.3 Point set topology . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . 20
2.6 Lie Algebras and Lie Brackets . . . . . . . . . . . . . . . . . 22

3 Applications in Computing 24
3.1 Lie Group Integrators . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Energy Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Applications in Physics 32
4.1 Noether’s Theorem and Symmetry . . . . . . . . . . . . . . 32
4.2 The Lorentz Group . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Lorentz Transformation . . . . . . . . . . . . . . . . 36
4.2.2 Forming the Lorentz Group . . . . . . . . . . . . . . 38

5 Applications in Control Theory 41
5.1 Linear and Nonlinear Control Theory . . . . . . . . . . . . . 42

5.1.1 Linear . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Affine Non-Linear Systems . . . . . . . . . . . . . . . 44

6 Conclusion 47

1



1 Introduction

1.1 Mathematically modeling symmetries

Groups are algebraic objects that are central to understanding the structure

of mathematics. A group is a set combined with a binary operation that

satisfies the axioms of associativity, identity, closure, and invariability [13].

This structure is one of the simplest in mathematics, yet encoded within its

properties are the beginnings of a crucial idea in mathematics, the notion of

symmetries. A Lie group is a special kind of continuous/topological group.

It is a group equipped with a topology and has the idea of symmetries

built into it. More specifically, it is a smooth manifold in which the group

operation is continuous. The definitions and relationships between these

mathematical objects will be explored in chapter 2 of this paper. The

difficulty with utilizing these powerful algebraic and geometric objects is

the rigorous, abstract mathematics required to understand them. As such,

Lie groups are under-utilized compared to more intuitive mathematics such

as calculus. For this reason, it is the goal of this paper to not only build up

an intuitive understanding of the relationships between these mathematical

constructs but also show how the properties of these objects can be utilized

in an interdisciplinary framing.

1.2 Improving numerical integration and the energy

drift problem

One of the newer applications discovered for Lie groups relates to numer-

ical methods/numerical computing. In computing, a typical application

of mathematics is the use of integrators to evaluate differential equations.
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However, this method often requires compromising either computational

speed or accuracy to create an efficient equation. Sacrificing either fac-

tor makes it difficult for researchers to make breakthroughs in their fields.

By utilizing Lie groups in computation, the symmetries of nature can be

encoded into the integrator’s design. This can lead to accurate and fast

computations that describe the differential equation’s essence to be solved

more accurately. For example, using symmetries to perform better integra-

tions is useful when studying possible solutions to the energy drift problem.

One of the fundamental laws of physics explains that the total energy in

a closed system must remain constant throughout time. However, due to

the error that often results from performing numerical integration, the to-

tal energy of a system tends to drift. This is a significant shortcoming of

integrators as the integration results will no longer satisfy a crucial law

of physics. The energy drift problem and solutions to it will be explored

further in-depth in chapter 3.

1.3 Noether’s theorem

Physics is another field that frequently makes use of symmetries to solve

problems and gain new insights. A theorem integral to the application of

Lie groups in physics is Noether’s theorem, which informally states the fol-

lowing ... if a system has a continuous symmetry, then there are correspond-

ing quantities whose values are conserved in time. This provides a direct

link between physical conservation and the Lie group structure. Physical

conservation is simply something that remains unchanged throughout the

evolution of the system. The most well-known example is the conserva-

tion of energy, which states that an isolated system’s total energy remains

3



constant over time, i.e., energy is conserved over time. While Noether’s

theorem plays a significant role in theoretical physics and the calculus of

variations, it is not without its constraints. Notably, it does not apply to

systems that cannot be modeled with a Lagrangian alone. An application

of Noether’s theorem is explored in chapter 4.

1.4 Controllability for Affine Non-Linear Systems

The final application studied in this paper is determining the controllability

of certain control systems. This falls under the control theory field, which

engineers use to analyze how state inputs can move a system to some

desired output state. Control theory is a widely used field with applications

ranging from aerospace engineering to robotics. One of the first steps in

control theory is performing an analysis of a system before deciding the

best control strategy. Lie groups play a unique role in affine non-linear

control systems that allow us to execute this analysis.
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2 Definitions

2.1 Groups

To build up to the definition of a Lie group, first, we must understand its

construction from both an algebraic and topological perspective.

The most elementary form of structure used in mathematics is the set

which is used to specify a collection of objects. These objects can be

anything from numbers to letters and symbols. They can also be finite

such as the set {1, 4, 9} or infinite such as the set of all real numbers. An

important property of sets is that the elements contained within them must

be unique. For example, if there exists a set containing the letter ’a’ five

times, it would only have one element, ’a’, as ’a’ is the only unique element.

Definition 2.1. A set is a collection of well defined and distinct objects,

which is itself an object.

Example 2.1. ∅ = {} is a set, a set containing nothing. This set is called

the empty set and it is unique.

Example 2.2. {{1, 2}, ∅} is a set. More specifically, it is a set containing

a set and the empty set.

Given two sets X and Y we can form a new set using the Cartesian

Product, which is the set of all ordered pairs (x, y) where x is an element

in X, and y is an element in Y .

Definition 2.2. The Cartesian Product of sets X and Y is denoted

X × Y and is defined using set-builder notation by

X × Y = {(x, y) | x ∈ X, y ∈ Y }
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Example 2.3. {1, 2, 3} × {4, 5} = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

Recall that a function takes some input x and maps it to a corresponding

f(x). Note that f(x) does not need to be the same type of number as x.

For example, suppose X = N and Y = Z, we could define a function that

maps the natural numbers into the integers as follows: f(x) = −x. This

would map the number 1, which is a whole number, to -1 , which is an

integer. For this reason, it can be useful to think of functions in a more

abstract way that tells us information about what the function is mapping

to and from. For the prior example we would write f : N → Z, where

f(x) = −x. More abstractly, functions map from one set to another.

Definition 2.3. For two sets, X and Y we define a function f : X → Y

which maps an element x ∈ X to some y ∈ Y . More formally, a function

from X to Y is a subset f ⊆ X × Y which satisfies the following:

1. ∀x ∈ X ∃y ∈ Y s.t. (x, y) ∈ f

2. ∀(x, y1), (x, y2) ∈ f → y1 = y2

Definition 2.4. The distance function d : Rn → R+ is defined on Rn as

d(x1, x2, ..., xn) =
√
x21 + x22 + ...+ x2n (1)

Using the prior definitions we can now define a binary operation which

is central in the definition of a group. A binary operation is a function

that takes two elements from a set, and maps it back into that same set.

The commonly used operations of addition, division, multiplication, and

subtraction are all examples of binary operations. For example, consider

2 + 3 = 5, where both 2 and 3 are elements of the naturals and the number

5 again is a natural number. As such, addition is a binary operation on
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the natural numbers. It should be noted that subtraction would not be a

binary operation on the natural numbers as it is possible to get a value

not in the set. For example, 2 − 3 = −1 is not an element of the natural

numbers.

Definition 2.5. Let X be a set. A binary operation on X is a function,

∗ : X×X → X. For any two elements x1, x2 ∈ X we can denote the binary

operation using infix notation as x1 ∗ x2 instead of ∗((x1, x2)).

A group is an algebraic structure that by its construction, encodes

important information about symmetries. The definition requires a set

equipped with a binary operation to satisfy various axioms such as closure,

associativity, and identity. While these properties may seem unassuming

at first glance, it provides a foundational object for discussing the structure

that exists within mathematics.

Definition 2.6. A group is a set X together with a binary operation ∗

on X that satisfies the following conditions

• ∀x1, x2, x3 ∈ X, x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3 (Associativity)

• ∃xi ∈ X such that ∀x ∈ X, xi ∗ x = x ∗ xi = x (Identity)

• ∀x ∈ X ∃x−1 such that x ∗ x−1 = x−1 ∗ x = xi (Inverse)

It should be noted that the identity of a group, xi, is unique and that

the inverse of an element is also unique.

Example 2.4. Z with addition is a group, denoted (Z, +). The inverse of

an element a ∈ Z is −a and the identity is 0.

7



An important property to note is that commutativity is not a re-

quirement for a group. Commutativity on X would be defined as follows:

For all x1, x2 ∈ X and a binary operation *, we have x1 ∗ x2 = x2 ∗ x1.

A group where the binary operation is commutative is called an Abelian

group.

Example 2.5. The set of real numbers, R, with 0 removed, denoted R\{0}

or R∗, combined with the operation of multiplication, forms a group, (R∗, •, 1).

One should remove 0 as it does not have a multiplicative inverse. More

specifically, R∗ forms an Abelian group.

Example 2.6. A permutation of a set X is a function σ : X → X that

is a bijective map. Permutation maps have inverses by definition of being

bijections and are associative under composition of maps. Additionally,

there is an identity permutation σi : X → X defined by ∀x ∈ X, σi(x)→ x.

As such, the set of all permutations on X = {x1, x2, ..., xn} forms a group

under composition called the symmetric group Sn of degree n.

2.2 Matrices and Matrix Groups

A matrix is a rectangular array of numbers, symbols, operations, or expres-

sions that is arranged in rows and columns. Matrices are powerful objects

that can be used to simplify linear equations, transform spaces, and are the

preferred structure for containing data used in numerical computations.

Every matrix has two numbers associated with it. These two numbers

when written as r × c, where r is the number of rows and c is the number

of columns, are called the dimension of the matrix. For example, the

dimension of a matrix containing two rows and two columns would be

2× 2.
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The following are all examples of matrices:

A =

(
1 2 3
4 5 6

)
(2× 3 matrix containing numbers)

B =

(
x2 xy

y + x3 8x

)
(2×2 matrix containing expressions)

C =



∂

∂x

∂

∂y

∂

∂z


(3× 1 matrix containing operations)

To denote matrices, I will be using boldface uppercase letters as seen

above. This convention will be maintained throughout the rest of this

thesis to distinguish between a set X and a matrix X.

An individual element of a matrix A is typically denoted ai,j and is called

an entry of the matrix, where i is index of the row and j is the index of

the column. As such, for a m × n matrix, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For example, in the above matrix A, a1,2 = 2, a2,3 = 6. For matrix B,

b2,2 = 8x, and for matrix C, c3,1 = ∂
∂z

. This type of notation is called

index notation and can also be used to define matrices.

2.2.1 Types of Matrices

Definition 2.7. A row matrix is a matrix that has only one row, but any

number of columns. As such, it would be a 1×m matrix. For example,

A =
(
1 5 −3

√
2 −12

)
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is a row matrix with dimensions 1× 5.

Definition 2.8. A column matrix is a matrix that has only one column,

but any number of rows. As such, it would be a n×1 matrix. For example,

A =

1
3
5


is a column matrix with dimensions 3× 1.

Definition 2.9. A square matrix is a matrix that has the same number

of rows and columns. As such, it would be a n× n matrix. For example,

A =

1 2 3
4 5 6
7 8 9


is a square matrix with dimensions 3× 3.

Definition 2.10. The main diagonal of a matrix A is the collection of

entries ai,j where i = j.

Definition 2.11. An identity matrix is a n× n square matrix that con-

tains ones on the main diagonal and zeroes everywhere else. It is typically

denoted In. The identity matrix I3 is shown below.

I3 =

1 0 0
0 1 0
0 0 1


Definition 2.12. A diagonal matrix is a matrix that has zeros in position

ai,j when i 6= j . For example,

A =

1 0 0
0 5 0
0 0 0


10



is a 3× 3 square, diagonal matrix.

Definition 2.13. A triangular matrix is special type of square matrix.

A square matrix is called upper triangular if all entries below the main

diagonal are zero. More formally, a square matrix is upper triangular if it

has the following form:

ai,j =


ai,j for i ≤ j

0 for i > j

Similarly, a square matrix is lower triangular if it has the following form:

ai,j =


ai,j for i ≥ j

0 for i < j

2.2.2 Matrix Operations

Definition 2.14. The scalar multiplication of a matrix A with a scalar

α ∈ R is denoted by αA. The entries of αA are defined by:

(αA)i,j = α(A)i,j

More specifically this type of multiplication is called left scalar multi-

plication. It should be noted that the left scalar multiplication and the

right scalar multiplication, Aα, are equivalent on matrices, that is,

αA = Aα

Example 2.7. Suppose that we have a matrix A where A =

(
1 1 1
2 3 5

)
and we have some scalar α = 2. Then αA =

(
2 2 2
4 6 10

)

11



Definition 2.15. The transpose of a matrix is an operation on matrices

that switches the row and column indices of a matrix A by producing a

new matrix that is denoted by AT. More formally, aTi,j = aj,i.

It should be noted that if the dimension of a matrix A is dim(A) = n×m,

then dim(AT) = m× n.

Example 2.8. Suppose that we have a matrix A where A =

(
1 2 3
4 5 6

)
,

then the transpose of A would be AT =

1 4
2 5
3 6


Definition 2.16. A square matrix whose transpose is equal to itself is

called a symmetric matrix. That is, a matrix A is symmetric if

AT = A

Definition 2.17. A square matrix whose transpose is equal to its nega-

tive is called a skew-symmetric matrix. That is, a matrix A is skew-

symmetric if

AT = −A

Example 2.9. The matrix A =

 0 2 −45
−2 0 −4
45 4 0

 is a skew-symmetric ma-

trix since AT =

 0 −2 45
2 0 4
−45 −4 0

 = −A

The determinant of a matrix is a value that is computed from the

elements of a square matrix and contains information about the properties

of the linear transformation that the matrix represents. Geometrically,

it can be viewed as the scaling factor of volume represented by the linear

12



transformation. For example, the determinant of a 3 × 3 matrix is the

volume of a parallelepiped that is spanned by the column or row vectors of

the matrix.

The determinant of a matrix will be denoted in two ways. When using

the matrix variable A, the determinant is denoted det(A). In matrix form

the determinant is denoted by using straight line brackets.

For 2× 2 matrices the determinant is defined as:

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc (2)

Example 2.10. The determinant of the matrix A =

(
2 4
3 7

)
is found as

follows:

det(A) =

∣∣∣∣2 4
3 7

∣∣∣∣ = 2× 7− 4× 3 = 2

For 3× 3 matrices the determinant is defined as:

det(A) =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ (3)

= aei+ bfg + cdh− ceg − bdi− afh. (4)

In general, the determinant for any n× n matrix can be determined using

the Leibniz formula:

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σi

)
,

where Sn is the group of all permutations of the set {1, 2, 3, ..., n}, and

sgn(σ) is the signature of σ and has a value of +1 for even permutations

13



and -1 for odd permutations.

The following properties of the determinant are important to note for

square matrices:

1. det(A) ∈ R

2. det(In) = 1

3. det(AT) = det(A)

4. det(A) × det(B) = det(AB), where A and B are the same size

2.3 Point set topology

Point set topology is a crucial component of the construction of structures

such as Lie groups. It allows us to introduce notions of nearness, coor-

dinates, and distances to what would otherwise be a set of values. For

example, the set of real numbers in two dimensions, R2, is just a plane

containing values. What gives the usefulness in everyday applications is

the topology that is defined on it and the topological properties it has.

The tools developed in this subsection grant us the ability to describe the

geometry of abstract spaces, enabling simpler computations. For example,

a 3-dimensional space that is a topological space is the unit sphere. While

it may be challenging to solve problems bounded to a sphere, a sphere is

locally Euclidean to the real plane. As such, we can use homeomorphisms

to map values to the real plane, do our calculations, and map back to the

sphere. These processes and definitions are explored below.

Definition 2.18. Let X be a non-empty set. A topology on X is a

collection of subsets τ ⊆ X which satisfy the following:

14



1. ∅ ∈ τ

2. τ ∈ X

3. ∀u, v ∈ τ , (u ∩ v) ∈ τ (Closed under finite intersections)

4. ∀C ⊆ τ , ∪C ∈ τ (Closed under arbitrary unions)

An element of τ is called an open set. It should be noted that we can define

what an open set is in a variety of ways depending on how we construct

the topology.

Defining a topology on a set is crucial as it is the weakest structure we can

establish on a set to have the properties of convergence and continuity, or

lack thereof.

Example 2.11. Let X = {1, 2, 3}. Then an example of a topology on X

would be τ = {∅, {1}, {3}, {1, 3}, {1, 2, 3}}

Example 2.12. The largest topology we can form on a set X is called the

discrete topology. This topology is formed by using the power set of X,

that is, the set of all subsets of X.

Example 2.13. One of the most important topologies we can define on a

set is the usual/standard topology on the real numbers Rn

The usual topology is formed by creating open balls of dimension n

on Rn. The open ball is an n-dimensional sphere of radius r around any

arbitrary point p ∈ Rn and is constructed as follows.

Br(x) = {y ∈ Rn|
√∑n

i=1(y
i − xi)2 < r} = {y ∈ R|d(x, y) < r}

We can then define the topology as follows:

15



u ∈ τstd if and only if ∀p ∈ u ∃r ∈ R+ such that Br(p) ⊆ u.

Proof. We want to show (w.t.s) that the standard topology is indeed a

topology on Rn. We need to check the following four properties:

1. ∅ ∈ τstd is vacuously true

2. W.t.s that Rn ∈ τstd.

By definition ∀x ∈ Rn ∃Br(x) ⊆ Rn. Therefore Rn ∈ τstd.

3. W.t.s that ∀u, v ∈ τstd, u ∩ v ∈ τstd.

Suppose u, v ∈ τstd

Let p ∈ u ∩ v → p ∈ u and p ∈ v

Since p ∈ u ∃r1 ∈ Rn s.t. Br1(p) ⊆ u

Since p ∈ v ∃r2 ∈ Rn s.t. Br2(p) ⊆ v

Therefore Bmin(r1,r2)(p) ⊆ u and Bmin(r1,r2)(p) ⊆ v

Thus Bmin(r1,r2)(p) ⊆ u ∩ v =⇒ u ∩ v ∈ τstd

4. W.t.s that C ⊆ τstd =⇒ ∪C ∈ τstd

Let u ∈ C =⇒ ∀p ∈ u∃r ∈ R+ s.t. Br(p) ⊆ u

Since Br(p) ⊆ u it directly follows that Br(p) ∈ ∪C

Thus ∪C ∈ τstd.

Therefore, the standard topology does indeed form a topology on Rn

Definition 2.19. A topological space is a non-empty set X paired with

a topology.

Example 2.14. Suppose X = {a, b, c} and T = {∅, {a}, {a, b}, X}. It can

be easily shown that T is a topology on X by checking the above conditions.

Thus, (X,T ) is a topological space.
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Definition 2.20. A base or basis for a topology τ of a topological space

(X, τ) is a set B of open subsets of X such that every element of τ is equal

to a union of some subset of B. Informally, it is the minimum number of

open sets required to create the topology. It should be noted that there

can be multiple bases where some are bigger or smaller than others.

An alternate, but equally useful, way to construct a topology is by form-

ing open neighborhoods.

Definition 2.21. Given a point p in a set X, we define a neighborhood

as a subset S of X that includes a open set U that contains p. More

formally,

p ∈ U ⊆ S

Definition 2.22. An open neighborhood is a neighborhood in which S

is also an open set.

An important consequence of the neighborhood construction of open sets

is that it will allow us to introduce the notion of limit points, which tell

us information about the boundaries of a set. It should be noted that the

open neighborhood construction is how we defined the standard topology

on Rn above.

Example 2.15. The n-dimensional set of real numbers, Rn, forms a topo-

logical space with the standard topology, (Rn, τstd,Rn).

An important property to note of topological spaces is that any subset

S of a topological space (X, τ) is again a topological space with a new

topology called the subspace topology. The subspace topology is defined

as

17



τS = {S ∩ U : U ∈ τ}

This property becomes very import when we introduce the notion of a

topological space being locally Euclidean.

Definition 2.23. Let S be a subset of a topological space X. A point

p ∈ X is called a limit point of S if every neighborhood of p contains at

least one point of S that is different from p.

The set of all limit points of a subset S is important because it contains

all of the non-isolated points within S, called the interior of S, but also

contains the points on the boundary of S.

Definition 2.24. The closure of a subset S of a set X is defined as the

union of S with the set of all limit points of S.

Definition 2.25. If we have a topological space X, then a cover C of X

is a collection of subsets Ui of X whose union is X. A subcover is a subset

of C that still covers X. Additionally, we call C an open cover if each of

its members is an open set, i.e., Ui ∈ τ where τ is the topology on X.

Definition 2.26. A Hausdorff space is a topological space X where for

any two distinct points p1, p2 ∈ X there exits neighborhoods of each that

are disjoint.

Definition 2.27. A second-countable space, also called a completely

separable space, is a topological space whose topology has a countable

base. A countable set is a set with the same number of elements as some

subset of the natural numbers.

Definition 2.28. A homeomorphism is a map f from one topological

space, (X, τX), to another topological space, (Y, τY ), such that
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1. f is a bijection

2. f is continuous

3. f has an inverse, f−1, that is continuous

Homeomorphisms are crucial as when there is a homeomorphism between

a topological space X and a topological space Y , then they have the same

topological properties such as countability, separability, compactness, and

connectedness. For example, if Y has a topological property that X does

not have, then we know that no homeomorphism exists between the two

spaces.

Definition 2.29. A metrizable space is a topological space that is home-

omorphic to a metric space. More formally, a topological space (X, τ) is

said to be metrizable if there is a metric d : X × X → R+ such that the

topology induced by d is τ .

Definition 2.30. A topological space X is called locally Euclidean if

there exists a positive integer n such that every point in X has a neighbor-

hood that is homeomorphic to Rn equipped with the standard topology.

The topological properties and definitions above cover all of the topology

pre-requisites to define manifolds, which are used in the construction of Lie

groups.

2.4 Manifolds

Definition 2.31. A topological manifold X is a locally Euclidean Haus-

dorff space that is second-countable and metrizable . Some important prop-

erties to note are as follows:
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1. The homeomorphism ϕ : N → V , where N is a neighborhood in X

and V is a neighborhood in Rn, is called the chart or coordinate

system.

2. The neighborhood N is the domain of the chart.

3. The image of N, ϕ(N) ∈ Rn is called the coordinate of the point p,

where p is a point in the neighborhood N .

Example 2.16. The set of real n×n matrices Mn(R) forms a vector space

that is isomorphic to Rn2
and contains an open subset GL(n,R), called the

general linear group. As such Mn(R) is a topological manifold.

Since topological manifolds are locally Euclidean, we introduce a new

term to keep track of each chart that has neighborhood Ni and its cor-

responding homeomorphism ϕi. We define the atlas A of a topological

manifold as the set containing all paired neighborhoods and homeomor-

phisms. That is,

A = {(Ni, ϕi) : i ∈ I}, where I is a collection of indices of the charts.

Definition 2.32. A differentiable/smooth manifold is a n-topological

manifold with a smooth atlas. A smooth atlas is one in which every home-

omorphism contained in the atlas is differentiable.

Example 2.17. The surface given by x2 + y2 + z2 = 1 is a differentiable

manifold.

2.5 Lie Groups and Lie Algebras

Definition 2.33. A Lie group is a group that is also a finite-dimensional

differentiable manifold, in which the group operations of multiplication and
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inversion are smooth maps. Smoothness of the group multiplication can be

defined as follows:

(x, y) 7→ x−1y (5)

Example 2.18. An important example of a Lie group is the general lin-

ear group

GL(n,R) =

{
A =

(
a b
c d

)
: detA 6= 0

}
(6)

Every linear algebraic group is a closed subgroup of the general linear

group which is why it is a quintessential example of a Lie group.

Example 2.19. The orthogonal group in dimension n, denoted by O(n),

is a subgroup of the general linear group that consists of distance-preserving

transformations of Euclidean space of dimension n. The group operation is

the composition of these transformations. The orthogonal group is defined

on the reals R as

O(n,R) = {x ∈ GL(n,R)|xTx = xxT = I} (7)

Example 2.20. The special orthogonal group is a subgroup of the

orthogonal group that consists of the transformations that are a rotation

about θ

SO(2,R) =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R/2πZ

}
(8)
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2.6 Lie Algebras and Lie Brackets

Definition 2.34. Let V,W,X be vector spaces. A bilinear map is a

function f : V ×W → X such that for all α ∈ F , u, v ∈ V , and z, w ∈ W ,

f((αu+v, w)) = αf((u,w))+f((v, w)) and f((v, αz+w)) = αf((v, z))+f((v, w)).

Observe that these two conditions are equivalent to saying that for each

v ∈ V and w ∈ W the maps Tv : W → X defined by Tv(z) = f((v, z))

and Sw : V → X defined by Sw(u) = f((u,w)) are linear transformations.

When V = W we can check whether the bilinear map f : V × V → X is

one the following three important types:

1. Symmetric: for all v, w ∈ V , f((v, w)) = f((w, v)).

2. Skew-symmetric: for all v, w ∈ V , f((v, w)) = −f((w, v)).

3. Alternating: for all v ∈ V , f((v, v)) = 0.

Definition 2.35. A Lie algebra is a (finite-dimensional) vector space g

that is equipped with an alternating bilinear map [·, ·] : g×g→ g satisfying

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0

for all u, v, w ∈ g. This equation is called the Jacobi identity, and such

a map is called a Lie bracket.

Example 2.21. Consider the zero-lie bracket defined on Rn: [u, v] = 0 for

all u, v ∈ Rn. This makes Rn into a trivial Lie algebra. A Lie algebra is

called abelian Lie algebra if its Lie bracket is identically 0.
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Example 2.22. On R3 we define the Lie bracket to be the cross product.

Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3). Define:

[~u,~v] = ~u× ~v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).
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3 Applications in Computing

3.1 Lie Group Integrators

Numerical methods are algorithms/procedures for finding numerical ap-

proximations of mathematical problems without symbolic computation.

These methods are frequently used in performing computations that can-

not be done symbolically or would be tedious to do so. As such, they are

widely used throughout applied mathematics, engineering, and scientific

fields.

A specific class of methods used frequently are numerical methods for

ordinary differential equations, more informally called numerical inte-

gration.

Definition 3.1. An ordinary differential equation (ODE) is an equa-

tion involving a function y and its derivates. An ODE of order n is an

equation of the form

F
(
x, y, y′, ..., y(n)

)
= 0, (9)

where y is a function of x, y′ is the first derivative of y with respect to x,

and yn is the nth derivative with respect to x [2].

ODEs are of incredible relevance to many scientific disciplines, includ-

ing physics, biology, chemistry, and economics. This is a result of ODEs

capturing the ‘changes’ that occur in these fields. Additionally, these dis-

ciplines are often concerned with using ODEs to make predictions about

how a system will behave given different input conditions.

Without loss of generality, we can focus on first-order differential equa-

tions since higher-order ODEs can be converted into systems of first-order

24



differential equations by introducing additional variables. The focus of this

section will be exploring first-order differential equations and how they can

be improved by using symmetries.

Definition 3.2. A first-order differential equation is an ODE together

with an initial condition which specifies the value of the unknown function

y at a given point in the domain. A first-order differential equation has the

form

y′(t) = f(t, y(t)), y(t0) = y0, (10)

where f is a function f : [t0,∞] × Rd → Rd, and the initial condition

y0 ∈ Rd.

Thus, numerical integration can be framed as a method that allows us to

gain numerical approximations to first-order differential equations. A key

point of numerical integration is that the results are approximations and

prone to some level of error. Additionally, different numerical integration

methods either prioritize computational speed or error. As such, choosing

the proper integration method for a given problem can be challenging.

As seen in Figure 1, we can plot the analytical solution to a differential

equation along with the approximations from different numerical integra-

tion methods to gain some intuition into how various integration methods

provide different approximations. The primary factor that causes the differ-

ences illustrated in this Figure is the complexity of the integration methods

used. The Euler method is the simplest method to utilize but has the most

significant error, while the Runge-Kutta method requires additional com-

plexity but produces far more accurate results [7]. Additionally, Figure 1

reveals how the Euler’s method diverges rapidly while the Runge-Kutta
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method remains relatively accurate during the same integration interval.

Figure 1: The output y, of the differential equation ẏ = sin(t)2 y as pre-
dicted by different integrators contrasted against the exact solution

While Euler’s method does accrue a significant error in relatively short

intervals, it is one of the simplest integration methods to implement. As

such, the Euler method can be used to demonstrate how improvements can

be made to integration methods by using symmetries.

Definition 3.3. For a first-order differential equation of the form ẏ = F (y)

with the initial conditions y(0) = y0 we can approximate the solution with

Euler’s method by taking a small time increment h, and approximating

y(h) using:

y1 = y0 + h F (y0) (11)

Example 3.1. Suppose we have the differential equation ẏ = x2 with the

initial condition y(0) = 1 and we want to approximate the output of the

ODE at y(0.9). Euler’s method of integration tells us that y1 = y(0)+h(02).
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Taking the step size h = 0.3, then

y1 = 1 + 0.3 · 02 = 1. Similarly,

y2 = y1 + 0.3(x21) = 1 + 0.3(0.32) = 1.027, and

y3 = y2 + 0.3(x22) = 1.027 + 0.3(0.62) = 1.135.

Thus y(0.9) u 1.135. We can now compare this to the analytical result

of the differential equation. We can rewrite the ODE as dy
dx

= x2, thus by

multiplying by dx we get dy = x2dx. Taking the integral of both sides results

in y + C1 = x3

3
+ C2, where C1, C2 are arbitrary constants. Now we can

rewrite the equation as y = x3

3
+C3, where C3 = C2−C1. Using the initial

condition y(0) = 1 we find that C3 = 1, thus the final result is y(x) = x3

3
+1.

Evaluating this equation at y(0.9) yields y(0.9) = 0.93

3
+ 1 = 1.243. This

example shows that Euler’s method was able to provide an approximate

solution that was relatively close to the actual answer. More importantly,

Euler’s method would have worked and produced an approximate solution

even if we could not have solved the equation analytically.

Another, but more complex way to think about Euler’s method is to

consider the constant vector field Fy0(y) := F (y0) which is obtained by

parallel translating the vector F (y0) to all points of phase space [7]. As a

consequence, it is necessary to compute the exact h-flow of this vector field

starting at y0. The phase space of a differential equation can be thought of

as a fluid flow that shows you how the output of the equation will change

based on different initial conditions. As such, the h-flow can be thought

of as stepping along a specific streamline. An example of a phase space

diagram more clearly illustrates this concept and is provided in Figure 2.

Definition 3.4. The flow on a set X is a group action of the additive group

of real numbers on X. More formally, a flow is a map f : X ×R→ X such
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Figure 2: The phase space of the differential equation y′ = y−x. The flow of
the differential equation is represented with the blue vectors. Additionally
the solution when the initial condition is y(1) = 3 is shown as a red curve.

that for all x ∈ X and all real numbers y and z,

f(x, 0) = x (12)

f(f(x, z), y) = f(x, y + z) (13)

Shifting to this vector field based definition allows a clear transition

to the modifications we can make to the Euler method using Lie groups.

Lie group integration methods work using the same principle but benefit

from allowing for more complex vector fields. As such, we can define a

modified version of the Euler method called the Lie-Euler method using

the following expression,

yn+1 = exp(hFyn)yn (14)

28



where exp is the flow of a vector field.

Example 3.2. Consider the following differential equation in R3 [6],

ẏ =

ẏ1ẏ2
ẏ3

 =

 −y2 + y1y
2
3

y1 + y2y
2
3

−y3(y21 + y22)


Note that d

dt
(y21 + y22 + y23) = 0. Thus the magnitude of y = (y1, y2, y3)

T

is time invariant in the exact solution. As such, the solution to the differ-

ential equation can be thought of as rotations on a sphere of radius ||y0||.

Thus, we can introduce the Lie group SO(3) to capture this symmetry in

the integration. As such, we will need to formulate ẏ on the homogeneous

space of a sphere. Now the Lie-Euler formulation for this problem becomes

yn+1 = exp

h
 0 −(y21 + y22) y3(y1 − y2)

y21 + y22 0 y2(y1 + y2)
−y3(y1 − y2) −y3(y1 + y2) 0

yn

Figure 3 shows the error for evaluating ẏ using the traditional Euler method

and the Lie-Euler method [6]. Notably the error in the traditional Euler

method quickly blows up, while Lie–Euler method stabilizes near the exact

solution. While the Lie-Euler method did require us to identify the sym-

metry and recognize the suitable Lie group representation, it produced far

more accurate results than the traditional Euler method.

As seen in the above example, by identifying the symmetries of a dif-

ferential equation, we can use the corresponding Lie group representation

to constrain the integration method. This allows for more accurate results

that capture the essence of the original equation more accurately. This

same principle can be applied to differential equations from various other

disciplines if a symmetry is found.
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Figure 3: The error produced by traditional Euler method of integration
compared to the error produced by the Lie-Euler method. Source: Berland

3.2 Energy Drift

The errors discussed in Section 3.1 that result from numerical methods have

significant consequences for real-world systems. For example, computer

simulations of mechanical systems suffer due to these gradual errors when

performing long-term analyses. The result is a gradual change in the total

energy of a closed system over time called energy drift. This is opposed

to one of the fundamental laws of physics, which states that an isolated

system’s total energy should remain constant.

More specifically, the cause of this drift is error produced when analyzing

the motion of the system. One of the key components of the total energy of

the system is the kinetic energy, the energy associated with motion, which

is governed by

Ekinetic =
1

2
m~v 2 (15)

where m is the mass of the system, and ~v is the velocity. Thus, when the
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velocity has some small error δ~v, the resulting energy of the system will be

Ekinetic =
∑

m~v 2
true +

∑
mδ~v 2, (16)

where ~vtrue is the actual velocity.

Due to this problem, there are significant benefits to choosing an integra-

tion method to reduce or eliminate the energy error. Integration methods

are categorized into two groups, symplectic and non-symplectic. Symplec-

tic integrators are integration methods designed to provide numerical so-

lutions to Hamilton’s equations, which are an alternate way of expressing

equations of motion. The benefit of doing so is that symplectic integrators

can take advantage of conserved quantities, i.e. symmetries, inherent to

the formulation of Hamiltonians. As such, they significantly reduce the ac-

crued error. The connection between conserved quantities and symmetries

is explored in Chapter 4 of this paper.

While symplectic integrators are incredibly important, the necessary

background information to fully explore them is outside the scope of this

paper. The key takeaway of symplectic integrators is that they build on the

symmetries of a system to provide more accurate solutions and are crucial

in molecular dynamics, plasma physics, and celestial mechanics.
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4 Applications in Physics

4.1 Noether’s Theorem and Symmetry

Classical mechanics is a branch of physics concerned with describing mo-

tion. Fundamental to classical mechanics are the Lagrangian and Hamil-

tonian formalisms, which are an alternate way of expressing equations of

motion. One of the essential facets of using these alternate formalisms

comes from Noether’s theorem, which we can use to connect continuous

symmetries to conserved quantities. More specifically, Noether’s theorem

states that every differentiable symmetry of an action of a physical system

has a corresponding conservation law. A conservation law is a measurable

property of an isolated physical system that does not change as the system

evolves over time. Common examples include the conservation of energy,

conservation of momentum, and conservation of electric charge.

The goal of this section is to build up intuition as to how we can use

Noether’s theorem to identify the corresponding conservation law. As such,

we first must define the necessary definitions from physics that are utilized

when applying Noether’s theorem.

Definition 4.1. The Lagrangian L of a system is defined as kinetic energy

K of the system minus the potential energy U of the system. That is,

L = K − U. (17)

The kinetic energy is the energy it has by virtue of being in motion, while

the potential energy of a system is the energy it has by virtue of its position

relative to other bodies.

32



Definition 4.2. Generalized coordinates are a set of parameters that

describe the configuration of a system with respect to some reference config-

uration. Notably, the minimum number of generalized coordinates needed

to describe the system is given by the number of degrees of freedom.

These two definitions allow us to express Noether’s theorem in a general

manner that can be adapted to various physics problems. The critical

component to recognize from these definitions is that we can describe the

motion of a system using the energy and describe the location without

specifying a coordinate system. Additional background information about

Lagrangian mechanics can be found in classical mechanics textbooks.

Example 4.1. Consider a pendulum of mass m hanging from a mass-less

wire of length l from the ceiling. The mass experiences the acceleration to

due gravity g and is free to rotate some angle θ. This scenario is depicted

in Figure 4. In this system, there is one degree of freedom; thus, our

generalized coordinate is θ. While we could specify a coordinate plane and

express the motion in terms of its x and y coordinates, this leads to an

unnecessary loss of generality. As such the kinetic energy of the system is,

Figure 4: The error produced by traditional Euler method of integration
compared to the error produced by the Lie-Euler method. Source: Berland
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K =
1

2
m(v)2 =

1

2
m(lθ̇)2.

Similarly, we can express the potential energy U in terms of the generalized

coordinate as

U = mgh = −mgl cos(θ).

These results follow from adapting the traditional expressions of kinetic and

potential energy to depend on theta.

Thus, the Lagrangian of this system is

L = K − U =
1

2
m(lθ̇)2 +mgl cos(θ).

Now that we have established though an example of how Lagrangians

and generalized coordinates can be applied to a specific problem, we can

state Noether’s theorem.

Definition 4.3. Assume we have a system described by generalized coor-

dinates q1, ..., qn and the Lagrangian L(q1, ..., qn, q̇1, ..., q̇n, t). Additionally

assume that an infinitesimal transformation qi(t)→ qi(t) + δqi(t) is a sym-

metry transformation, that is, the action is invariant under this transfor-

mation. Then there is a conserved quantity of this system, J, such that

J =
∑
i

∂L
∂q̇i

δqi − F, (18)

where
dF

dt
= ∆L is the change in the Lagrangian under the transformation.

This is called Noether’s theorem in the Lagrangian formalism [9].

Example 4.2. The Hydrogen Atom has a Coulomb potential given by the

Hamiltonian H = p2

2m
− k

r
, k = e2. Since Noether’s theorem is expressed

using the Lagrangian formalism, the first step is to use a Legendre transform
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to derive the Lagrangian [9].

L =
1

2
mq̇2 +

k

|q|
, q = (x, y, z)T

Analyzing the infinitesimal rotation (φ → 0) using the matrix representa-

tion of SO(3) around the x axis:

x′y′
z′

 =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

xy
z

 ≈
xy
z

+

0 0 0
0 0 −1
0 1 0

xy
z


The approximation was performed by using a first-order Taylor expansion

around φ = 0. This allows us to express the transformation in the same

form as is used in Noether’s theorem:

x→ x+ δx = x+ 0 (19)

y → y + δy = y − z (20)

z → z + δz = z + y (21)

Note that x is invariant under the transformation and that the Lagrangian

itself is invariant under the transformation. Thus ∆L = 0. The conserved

quantity is now expressed as

∂L
∂ẋ

δx+
∂L
∂ẏ
δy +

∂L
∂ż
δz = 0−mẏz +mży = Lx

where Lx is the x component of angular momentum. Performing the anal-

ysis again using rotations about the y and z axis tells us that Ly and Lz are

additionally conserved. Thus, the application of Noether’s theorem to this

problem revealed that the rotational symmetries that exist are a consequence
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of the conservation of angular momentum.

We can see the connections between Noether’s theorem and the symme-

tries that exist within a problem through this example. Additionally, it

showed how analyzing a problem through the Lie group SO(3) can reveal

additional information from a relatively simple premise. These same prin-

ciples hold for more complex examples. As such, Noether’s theorem proves

to be a practical application of Lie groups to higher-level physics such as

quantum field theory.

4.2 The Lorentz Group

As seen in the above section, symmetries are a powerful tool in physics.

Not only does it provide a compact way of expressing equations, but it can

also be used to test the strength of the laws of physics. One of Lie Groups’

most famous applications to physics is with the Lorentz Group [11].

The Lorentz group is the group containing all Lorentz transformations of

Minkowski space-time. Minkowski space-time combines three-dimensional

Euclidean space and time into a four-dimensional smooth manifold. The

metric between any two events is independent of the inertial frame of ref-

erence. Only the relevant details of Minkowski space-time and Lorentz

transformations will only be contained in this research. However, further

information can be found in many undergraduate textbooks covering rela-

tivity [10].

4.2.1 Lorentz Transformation

The Lorentz transformations are a family of linear transformations from

a coordinate frame in space-time to another frame that moves at a con-
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stant velocity relative to the former and is the basis of special relativity.

Essentially it describes how motion and time will be perceived in a different

frame of reference. For example, if a spacecraft is traveling fast enough,

the amount of time someone onboard the spacecraft experiences will be

different from that of a stationary observer on Earth. This phenomenon is

called time dilation and is described by the Lorentz transformations.

The Lorentz transformations are typically introduced as maps where,

t′ = γ(t− vx

c2
) (22)

x′ = γ(x− vt) (23)

y′ = y (24)

z′ = z. (25)

(t, x, y, z) and (t′, x′, y′, z′) are the coordinates of an event in two frames,

where the prime frame is seen from the unprimed frame as moving with

speed v along the x-axis, c is the speed of light, and γ = (
√

1− v2

c2
) is the

Lorentz factor.

Example 4.3. Suppose lightning strikes a tree and is observed by someone

next to the tree at t = 10 microseconds. The lightning strike is also observed

by someone in a rocket traveling in the positive x-direction with a velocity

of 0.5c. Relativity tells us that this lightning strike would not be observed

at the same time for both observers. As such the Lorentz transform gives

us the time that the rocket observes the lightning as
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t′ =
t−

vx

c2√√√√√√1−

v
c


2

(26)

=
(10× 10−6s)−

(0.5c)(0)

c2√√√√√√1−

0.5c

c


2

(27)

= 11.55× 10−6s (28)

= 11.55 microseconds. (29)

This example illustrates the central notion of relativity, that time and space

are relative.

While this form helps gain insights into how Lorentz transformations

can be applied to common examples, physicists often prefer to analyze the

effects of special relativity on space as a whole. It is valuable to form a

group consisting of all Lorentz transforms where the group operation is

composition. Notably, this forms a Lie group called the Lorentz group.

4.2.2 Forming the Lorentz Group

To simplify the derivation, we can choose the units of the speed of light

to be c = 1 so that distance is measured in light-seconds and time is mea-

sured in seconds. This will make the rest of the Lorentz group’s deriva-

tion easier to follow as it removes unit errors. Now, the first step in the
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derivation is to express the event more succinctly using the four-vector

xµ = (t, xi), where µ = 0, 1, 2, 3.

Then, a Lorentz transformation on the four vector is expressed in Ein-

stein index summation notation by

xµ → Lµνx
ν (30)

such that the transformation preserves the invariant interval xµxνζµν =

s2. ζµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and s is called the space time interval and is

expressed by

s2 = −t2 + ~x 2. (31)

The space-time interval is a concept introduced to combine distances in

space and time. The space-time interval’s importance is that it remains

the same in all reference frames, i.e., it is a symmetry.

Example 4.4. The Lorentz boost is an example of a Lorentz transforma-

tion. The boost is defined as

(
t
x

)
→
(

coshφ sinhφ
sinhφ coshφ

)(
t
x

)

where φ is the rapidity in the x direction. This transformation preserves

−t2 + x2 and as such preserves s2 = −t2 + x2 + y2 + z2. More specifically

the matrix representation L of the boost transformation would be expressed

as 
coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 .
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Note that the rapidity is defined in terms of the velocity v, as v = tanhφ.

Thus we can rewrite the boost in the form

(
t
x

)
→
(
γ γ v
γ v γ

)(
t
x

)
(32)

where γ = 1√
1−v2 = coshφ. This form of the boost is the most similar to

the form expressed at the beginning of Section 4.2.1.

The Lorentz group is the group containing all of the linear transforma-

tion matrices Lµν that are Lorentz transforms. Notably the Lorentz group

is a representation of the special orthogonal group SO(3, 1).

This group plays a crucial role in physics, especially at a higher level

when quantum mechanics and relativity are brought together—as such,

having a compact representation of time and space proves extraordinarily

useful. Understanding its derivation and how it results from symmetries

helps motivate higher levels of intuition when trying to understand these

complex fields.
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5 Applications in Control Theory

As the last example, we consider the use of symmetries and Lie groups in

control theory. Control theory is the process by which engineers deal

with the control of dynamical systems, a system whose state evolves with

time over a state space according to some fixed rule [1].

A state space is the set of all possible configurations of a system and

can be either discrete or continuous. An example of discrete but vast state

space would be the set of all possible piece positions on a chessboard. A

continuous example would be the position of a particle in some subset of

R3. The abstraction of state space is a valuable notion for control theory

and is frequently used in artificial intelligence and game theory.

The objective of control theory is to develop a model governing how state

inputs move the system to the desired state while minimizing error, delay,

and control stability. The first step in doing so is to model the system

using a State-Space representation. A State-Space representation is first-

order differential equation that relates a mathematical model with input

and output states [3].

Definition 5.1. A dynamical system is defined as a state space X, a set

of times T , and a rule R that specifies how the state evolves with respect

to time.

The rule is a function R : X × T → X, where R = R(x, t), x ∈ X is the

initial state and t ∈ T is some future time. Thus R(x, t) tells us the state

at time t given the initial state x.

If R(x, t) obeys the superposition principle, the system is governed by

linear differential equations and falls in the domain of Linear Control
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Theory [4].

When R(x, t) does not obey the superposition principle, the system is

governed by nonlinear differential equations and falls in the domain of

Nonlinear control theory. These types of problems are far more com-

mon as most real-world systems are not linear. Additionally, Lie groups

can aid us in quickly determining if a non-linear system is controllable.

Definition 5.2. Controllability describes the ability of an input to move

the internal state of a system from any initial state to any other final state

in a finite time interval.

5.1 Linear and Nonlinear Control Theory

5.1.1 Linear

It can become cumbersome to represent complex systems using differential

equations, especially if it has multiple inputs and outputs. The state-space

representation of a system replaces an nth order differential equation with

a single first-order matrix differential equation [8].

The state space representation for continuous linear systems is then given

by the following two equations

ẋ(t) = Ax(t) + Bu(t) (33)

y(t) = Cx(t) + Du(t) (34)

where there are r inputs, and m outputs. Additionally, x is the state vector,

a n× 1 matrix,

A is a constant n× n matrix called the state matrix,

B is a constant n× r matrix called the input matrix,
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u is r × 1 vector called the input,

C is a constant m× n matrix called the output matrix,

D is a constant m× r matrix called the direct transition matrix,

y is a m× 1 vector called the output.

Example 5.1. Suppose we have a mass, m, on a frictionless surface at-

tached to spring k2 on the left side, and spring k1 with a damper b on the

right side. We apply some force fa(t) as the input and want to know the dis-

placement z as the output. The aforementioned system is illustrated in fig-

ure (X). We can express the equations of motion as mẍ+k1x+k2x−k1z = fa

and b ż + k1 z − k1 x = 0. There are three state equations resulting from

the three energy storage elements m, k1, and k2. Since the energy of these

three elements depends on x, ẋ, and z, the state variables are:

q1 = x (35)

q2 = ẋ (36)

q3 = z (37)

From the equations of motion we can express the derivatives of the state

variables as:

q̇1 = ẋ = q2 (38)

q̇2 = ẍ =
1

m
(fa − k1x− k2x+ k1z) =

1

m
(fa − k1q1 − k2q1 + k1q3) (39)

q̇3 = ż =
k1

b
(x− z) =

k1

b
(q1 − q3) (40)
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Thus the system can be expressed in matrix form as:

q̇ = Aq + Bu (41)

y = Cq +Du (42)

where u = fa is the input, y = z is the output and

A =



0 1 0

k1 + k2

m
0

k1

m

k1

b
0
− k1
b

 , B =


0

1

m
0

 , C =
(
0 0 1

)
, D = 0

As seen above, the motion equations are more compactly expressed and can

easily be implemented into a computer system for solving.

5.1.2 Affine Non-Linear Systems

While linear control systems have many applications, most systems that

occur in the physical world are not linear. Any model that does not fit

the equation in the above section would be classified as nonlinear. An

important family of nonlinear systems appear linear in the actions but

nonlinear with respect to the state called control-affine systems

The formulation of control-affine systems can be achieved in terms of lin-

ear combinations of vector fields on a n dimensional differentiable manifold

X. For these systems ẋ = f(x, u) is of the form:

ẋ = h0(x) +
m∑
i=1

hi(x) ui (43)

where each hi is a vector field on X and ui ∈ R ∈ U ⊆ Rm (m < n) is an
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action variable that determines how much of hi(x) contributes to the result

ẋ. Here, h0 is called the drift vector field and hi is called the input

vector field.

It should be noted that in the case where X is a group, then by defi-

nition it is a Lie group. Thus, the drift vector field h0 is an infinitesimal

automorphism of X, and hi for i = 1...m are elements of the Lie algebra

L(X).

Definition 5.3. Let X1, ..., Xm denote smooth vector fields (v.f.) on a

smooth n-dimensional manifold M . By definition, the Lie algebra rank

condition at a point p0 ∈M(LARC(p0)) is the property that

Mp0 = SpanX(p0) : X ∈ Lie(X1, ..., Xm), where Lie(X1, ..., Xm) denotes

the Lie algebra of v.f. generated by X1, ..., Xm [12].

Theorem 1. Let Σ(X,D) be a control-affine system

1. If Σ is controllable, then Σ satisfies the Lie algebra rank condition

2. if Σ satisfies the ad-rank condition, then Σ is controllable

3. If G is an Abelian Lie group, then Σ is controllable if Σ satisfies the

rank condition. In particular, we can decide controllability with the

rank condition for any Lie group

X = T n ×Rm, n ∈ N, m ∈ N, (44)

where T n = S1 × S1...S1, n times.

Example 5.2. Let X be the Heisenberg group of dim 3

X =


1 a c

0 1 b
0 0 1

 : a, b, c ∈ R


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with the Lie Algebra

L(X) = SpanL.A

Y 1 =

0 1 0
0 0 0
0 0 0

 , Y 2 =

0 0 0
0 0 1
0 0 0

 , Y 3 =

0 0 1
0 0 0
0 0 0


As such, the Lie bracket is

[Y 1, Y 2] = Y 3 =

0 0 1
0 0 0
0 0 0


Considering the system with D = {h0+uY 2 : u ∈ R} where the infinitesimal

automorphism h0 is defined by

h0(x) = bY 3, for x ∈ X

Then, the Semi direct product < h0 : H >= SpanLA{Y 2, Y 3}.

Thus, Σ is not controllable [5].

This example illustrates the power of Lie groups in the context of control

theory. By analyzing the problem in terms of symmetries, we were able to

gain insights into the Heisenberg group and its applicability to control the-

ory. This same approach can be taken with other problems to significantly

simplify what would often require a great deal of analysis.
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6 Conclusion

The applications of Lie groups and general Lie theory are numerous and

can produce powerful results in various fields including computing, physics,

and control theory. These benefits are all a direct result of utilizing the

symmetries that exist within each discipline.

For computing applications, these symmetries were used to adapt typical

methods used for numerical integrations to ensure that solutions are within

the problem’s constraints. Physics applications resulted from Noether’s

theorem, which is used to understand where the conserved quantities, such

as mass, energy, and momentum, arise. They are a direct by-product

of the symmetries that exist in the universe. Finally, for control theory,

we used symmetries to determine whether an essential class of non-linear

control problems satisfies crucial properties that are of great importance to

engineers.

Notably, in this research, many Lie group applications were excluded

due to the high degree of field-specific information required to understand

how Lie groups can be utilized. One such application that was omitted

was the application to computer vision problems. Specifically, Lie groups

can be used for camera motion estimation and the establishment of image

geometry from said motion. For example, this technique can be used to

create a 3D image via a drone’s video feed. While outside of the scope

of this paper, further research may illuminate this possible application of

Lie groups, as well as many others. Although this paper is able to explain

several pertinent applications that showcase the usefulness of Lie groups

in several fields of study and industry, there are several applications that

remain under-utilized and under-researched. This paper serves to encour-
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age further inquiry into the utilization of Lie groups in a wide variety of

relevant fields.
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